Machine Learning Techniques in Structural Wind Engineering: A State-of-the-Art Review

被引:20
|
作者
Mostafa, Karim [1 ]
Zisis, Ioannis [1 ]
Moustafa, Mohamed A. [2 ]
机构
[1] Florida Int Univ, Coll Engn & Comp, CEE, Miami, FL 33199 USA
[2] Univ Nevada, Coll Engn, CEE, Reno, NV 89557 USA
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 10期
关键词
machine learning; neural networks; wind engineering; wind-induced pressure; aeroelastic response; computational fluid dynamics; ARTIFICIAL NEURAL-NETWORKS; PROPER ORTHOGONAL DECOMPOSITION; PRESSURE TIME-SERIES; BUFFETING RESPONSE; GAUSSIAN-PROCESSES; SUSPENSION BRIDGE; PREDICTION; INTELLIGENCE; SCALE; INTERPOLATION;
D O I
10.3390/app12105232
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Machine learning (ML) techniques, which are a subset of artificial intelligence (AI), have played a crucial role across a wide spectrum of disciplines, including engineering, over the last decades. The promise of using ML is due to its ability to learn from given data, identify patterns, and accordingly make decisions or predictions without being specifically programmed to do so. This paper provides a comprehensive state-of-the-art review of the implementation of ML techniques in the structural wind engineering domain and presents the most promising methods and applications in this field, such as regression trees, random forest, neural networks, etc. The existing literature was reviewed and categorized into three main traits: (1) prediction of wind-induced pressure/velocities on different structures using data from experimental studies, (2) integration of computational fluid dynamics (CFD) models with ML models for wind load prediction, and (3) assessment of the aeroelastic response of structures, such as buildings and bridges, using ML. Overall, the review identified that some of the examined studies show satisfactory and promising results in predicting wind load and aeroelastic responses while others showed less conservative results compared to the experimental data. The review demonstrates that the artificial neural network (ANN) is the most powerful tool that is widely used in wind engineering applications, but the paper still identifies other powerful ML models as well for prospective operations and future research.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Machine learning for structural engineering: A state-of-the-art review
    Thai, Huu-Tai
    STRUCTURES, 2022, 38 : 448 - 491
  • [2] State-of-the-art review on various applications of machine learning techniques in materials science and engineering
    Yu, Beiwei
    Zhang, Liqin
    Ye, Xiaoxia
    Wu, Junqi
    Ying, Huayong
    Zhu, Wei
    Yu, Zhongyi
    Wu, Xiaoming
    CHEMICAL ENGINEERING SCIENCE, 2025, 306
  • [3] The promise of implementing machine learning in earthquake engineering: A state-of-the-art review
    Xie, Yazhou
    Ebad Sichani, Majid
    Padgett, Jamie E.
    DesRoches, Reginald
    EARTHQUAKE SPECTRA, 2020, 36 (04) : 1769 - 1801
  • [4] A State-of-the-Art Review of Machine Learning Techniques for Fraud Detection Research
    Sinayobye, Janvier Omar
    Kiwanuka, Fred
    Kaawaase Kyanda, Swaib
    2018 IEEE/ACM SYMPOSIUM ON SOFTWARE ENGINEERING IN AFRICA (SEIA), 2018, : 11 - 19
  • [5] Machine learning techniques for structural health monitoring of heritage buildings: A state-of-the-art review and case studies
    Mishra, Mayank
    JOURNAL OF CULTURAL HERITAGE, 2021, 47 : 227 - 245
  • [6] Advancing Additive Manufacturing Through Machine Learning Techniques: A State-of-the-Art Review
    Xiao, Shaoping
    Li, Junchao
    Wang, Zhaoan
    Chen, Yingbin
    Tofighi, Soheyla
    FUTURE INTERNET, 2024, 16 (11)
  • [7] State-of-the-Art Machine Learning and Deep Learning Techniques for Parking Space Classification: A Systematic Review
    Rani, Rinkle
    Roul, Rajendra Kumar
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2025,
  • [8] Machine Learning in Healthcare Analytics: A State-of-the-Art Review
    Das, Surajit
    Nayak, Samaleswari P.
    Sahoo, Biswajit
    Nayak, Sarat Chandra
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2024, 31 (07) : 3923 - 3962
  • [9] Machine learning applications for building structural design and performance assessment: State-of-the-art review
    Sun, Han
    Burton, Henry V.
    Huang, Honglan
    JOURNAL OF BUILDING ENGINEERING, 2021, 33
  • [10] An extensive review on lung cancer therapeutics using machine learning techniques: state-of-the-art and perspectives
    Ahmad, Shaban
    Raza, Khalid
    JOURNAL OF DRUG TARGETING, 2024, 32 (06) : 635 - 646