WGANVO: monocular visual odometry based on generative adversarial networks

被引:2
|
作者
Cremona, Javier [1 ]
Uzal, Lucas [1 ]
Pire, Taihu [1 ]
机构
[1] Ctr Int Franco Argentino Ciencias Informac & Sist, CIFASIS, Bv 27 Febrero 210 Bis S2000EZP, Rosario, Argentina
关键词
Localization; Neural networks; Mobile robots;
D O I
10.4995/riai.2022.16113
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traditional Visual Odometry (VO) systems, direct or feature-based, are susceptible to matching errors between images. Furthermore, monocular configurations are only capable of estimating localization up to a scale factor, making impossible to use them out-of-the-box in robotics or virtual reality application. Recently, several Computer Vision problems have been successfully tackled by Deep Learning algorithms. In this paper we introduce a Deep Learning-based monocular Visual Odometry system called WGANVO. Specifically, we train a GAN-based neural network to regress a motion estimate. The resulting model receives a pair of images and estimates the relative motion between them. We train the neural network using a semi-supervised approach. In contrast to traditional geometry-based monocular systems, our Deep Learning-based method is able to estimate the absolute scale of the scene without extra information and prior knowledge. We evaluate WGANVO on the well-known KITTI dataset. We show that our system works in real time and the accuracy obtained encourages further development of Deep Learning-based localization systems.
引用
收藏
页码:144 / 153
页数:10
相关论文
共 50 条
  • [1] GANVO: Unsupervised Deep Monocular Visual Odometry and Depth Estimation with Generative Adversarial Networks
    Almalioglu, Yasin
    Saputra, Muhamad Risqi U.
    de Gusmao, Pedro P. B.
    Markham, Andrew
    Trigoni, Niki
    [J]. 2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 5474 - 5480
  • [2] Unsupervised Monocular Depth Estimation and Visual Odometry Based on Generative Adversarial Network and Self-attention Mechanism
    Ye, Xingyu
    He, Yuanlie
    Ru, Shaonan
    [J]. Jiqiren/Robot, 2021, 43 (02): : 203 - 213
  • [3] Monocular Visual Odometry Based on Recurrent Convolutional Neural Networks
    Chen, Zonghai
    Hong, Yang
    Wang, Jikai
    Ge, Zhenhua
    [J]. Jiqiren/Robot, 2019, 41 (02): : 147 - 155
  • [4] SGANVO: Unsupervised Deep Visual Odometry and Depth Estimation With Stacked Generative Adversarial Networks
    Feng, Tuo
    Gu, Dongbing
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (04): : 4431 - 4437
  • [5] Generative Adversarial Networks for Unsupervised Monocular Depth Prediction
    Aleotti, Filippo
    Tosi, Fabio
    Poggi, Matteo
    Mattoccia, Stefano
    [J]. COMPUTER VISION - ECCV 2018 WORKSHOPS, PT I, 2019, 11129 : 337 - 354
  • [6] Monocular Depth Prediction using Generative Adversarial Networks
    Kumar, Arun C. S.
    Bhandarkar, Suchendra M.
    Prasad, Mukta
    [J]. PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, : 413 - 421
  • [7] Monocular Visual Odometry Based on Hybrid Parameterization
    Mohamed, Sherif A. S.
    Haghbayan, Mohammad-Hashem
    Heikkonen, Jukka
    Tenhunen, Hannu
    Plosila, Juha
    [J]. TWELFTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2019), 2020, 11433
  • [8] A review of monocular visual odometry
    He, Ming
    Zhu, Chaozheng
    Huang, Qian
    Ren, Baosen
    Liu, Jintao
    [J]. VISUAL COMPUTER, 2020, 36 (05): : 1053 - 1065
  • [9] Monocular SLAM for visual odometry
    Munguia, Rodrigo
    Grau, Antoni
    [J]. 2007 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING, CONFERENCE PROCEEDINGS BOOK, 2007, : 443 - 448
  • [10] A review of monocular visual odometry
    Ming He
    Chaozheng Zhu
    Qian Huang
    Baosen Ren
    Jintao Liu
    [J]. The Visual Computer, 2020, 36 : 1053 - 1065