Robustly protected carrier spin relaxation in electrostatically doped transition-metal dichalcogenides

被引:14
|
作者
Zhang, Y. J. [1 ,2 ,3 ,4 ]
Shi, W. [5 ]
Ye, J. T. [6 ]
Suzuki, R. [1 ,2 ]
Iwasa, Y. [1 ,2 ,7 ]
机构
[1] Univ Tokyo, Dept Appl Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
[2] Univ Tokyo, QPEC, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
[3] Osaka Univ, Inst Sci & Ind Res, 8-1 Mihogaoka, Ibaraki, Osaka 0670047, Japan
[4] Max Planck Inst Festkorperforsch, Heisenbergstr 1, D-70569 Stuttgart, Germany
[5] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[6] Univ Groningen, Zernike Inst Adv Mat, Device Phys Complex Mat, Nijenborgh 4, NL-9747 AG Groningen, Netherlands
[7] RIKEN, CEMS, Wako, Saitama 3510198, Japan
基金
日本学术振兴会; 欧洲研究理事会;
关键词
WEAK-LOCALIZATION; QUANTUM-WELLS; VALLEY POLARIZATION; ORBIT INTERACTION; MONOLAYER MOS2; TRANSISTORS; SEMICONDUCTOR; COHERENCE; ELECTRONS; WS2;
D O I
10.1103/PhysRevB.95.205302
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Transition-metal dichalcogenides are unique semiconductors because of their exclusive coupling between the spin and the valley degrees of freedom. The spin flip simultaneously requires a large amount of the crystal momentum variation; hence most of the carrier scattering is expected to be the spin-conserving intravalley scattering. Analysis of the quantum interference effects on the magnetoconductivity in WSe2, MoSe2, andMoS(2) reveals that the spin-relaxation time is orders of magnitude longer than the carrier momentum scattering time, indicating that the valley-spin coupling robustly protects the spin polarization from carrier scatterings. In addition, the electron-spin-relaxation time of MoSe2 is found to be anomalously short compared to other members, which is likely the origin of the ultrafast valley scattering of excitons in MoSe2.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Out-of-plane carrier spin in transition-metal dichalcogenides under electric current
    Li, Xiao
    Chen, Hua
    Niu, Qian
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (29) : 16749 - 16755
  • [2] TRANSITION-METAL DICHALCOGENIDES
    不详
    CHEMIE IN UNSERER ZEIT, 1978, 12 (06) : 203 - 203
  • [3] Strain-driven phase transition and spin polarization of Re-doped transition-metal dichalcogenides
    Wang, Rui-Ning
    Jin, Chen-Dong
    Zhang, Hu
    Lian, Ru-Qian
    Shi, Xing-Qiang
    Wang, Jiang-Long
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (16) : 9962 - 9970
  • [4] Delayed Thermal Relaxation in Lateral Heterostructures of Transition-Metal Dichalcogenides
    Kanistras, Nikos
    Sgouros, Aristotelis P.
    Kalosakas, George
    Sigalas, Michail M.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (15): : 6815 - 6824
  • [5] Spin susceptibility of two-dimensional transition-metal dichalcogenides
    Hatami, H.
    Kernreiter, T.
    Zulicke, U.
    PHYSICAL REVIEW B, 2014, 90 (04)
  • [6] Spin-valley relaxation and quantum transport regimes in two-dimensional transition-metal dichalcogenides
    Ochoa, Hector
    Finocchiaro, Francesca
    Guinea, Francisco
    Fal'ko, Vladimir I.
    PHYSICAL REVIEW B, 2014, 90 (23)
  • [7] MAGNETOPLASMAS IN TRANSITION-METAL DICHALCOGENIDES
    KOBAYASHI, M
    PHYSICAL REVIEW B, 1983, 27 (06): : 3864 - 3866
  • [8] Optimal Charge-to-Spin Conversion in Graphene on Transition-Metal Dichalcogenides
    Offidani, Manuel
    Milletari, Mirco
    Raimondi, Roberto
    Ferreira, Aires
    PHYSICAL REVIEW LETTERS, 2017, 119 (19)
  • [9] Spin-dependent refraction at the atomic step of transition-metal dichalcogenides
    Habe, Tetsuro
    Koshino, Mikito
    PHYSICAL REVIEW B, 2015, 91 (20)
  • [10] PROPERTIES OF CHARGE AND SPIN-DENSITY WAVES IN TRANSITION-METAL DICHALCOGENIDES
    ANTONIOU, PD
    COHEN, MH
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (03): : 246 - 246