Failure mode and spatial distribution of damage in Rothbach sandstone in the brittle-ductile transition

被引:53
|
作者
Bésuelle, P
Baud, P
Wong, TF
机构
[1] Ecole Normale Super, Geol Lab, F-75231 Paris, France
[2] EOST, Lab Phys Roches, F-67084 Strasbourg, France
[3] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA
关键词
damage; sandstone; brittle-ductile transition; microscopy; X-ray computed tomography; bifurcation theory;
D O I
10.1007/PL00012569
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
To elucidate the spatial complexity of damage and evolution of localized failure in the transitional regime from brittle faulting to cataclastic ductile flow in a porous sandstone, we performed a series of triaxial compression experiments on Rothbach sandstone (20% porosity). Quantitative microstructural analysis and X-ray computed tomography (CT) imaging were conducted on deformed samples. Localized failure was observed in samples at effective pressures ranging from 5 MPa to 130 MPa. In the brittle faulting regime, dilating shear bands were observed. The CT images and stereological measurements reveal the geometric complexity and spatial heterogeneity of damage in the failed samples. In the transitional regime (at effective pressures between 45 MPa and 130 MPa), compacting shear bands at high angles and compaction bands perpendicular to the maximum compression direction were observed. The laboratory results suggest that these complex localized features can be pervasive in sandstone formations, not just limited to the very porous aeolian sandstone in which they were first documented. The microstructural observations are in qualitative agreement with theoretical predictions of bifurcation analyses, except for the occurrence of compaction bands in the sample deformed at effective pressure of 130 MPa. The bifurcation analysis with the constitutive model used in this paper is nonadequate to predict compaction band formation, may be due to the neglect of bedding anisotropy of the rock and multiple yield mechanisms in the constitutive model.
引用
收藏
页码:851 / 868
页数:18
相关论文
共 50 条
  • [1] Failure Mode and Spatial Distribution of Damage in Rothbach Sandstone in the Brittle-ductile Transition
    P. Bésuelle
    P. Baud
    T. Wong
    Pure and Applied Geophysics, 2003, 160 : 851 - 868
  • [2] Microfracturing in the brittle-ductile transition in Berea sandstone
    Muhuri, SK
    Scott, TE
    Stearns, DW
    PACIFIC ROCKS 2000: ROCK AROUND THE RIM, 2000, : 1177 - 1184
  • [3] A unified phase field damage model for modeling the brittle-ductile dynamic failure mode transition in metals
    Chu, Dongyang
    Li, Xiang
    Liu, Zhanli
    Cheng, Junbo
    Wang, Tao
    Li, Zhijie
    Zhuang, Zhuo
    ENGINEERING FRACTURE MECHANICS, 2019, 212 : 197 - 209
  • [4] BRITTLE FAILURE IN COMPRESSION - SPLITTING, FAULTING AND BRITTLE-DUCTILE TRANSITION
    HORII, H
    NEMATNASSER, S
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1986, 319 (1549): : 337 - 374
  • [5] A Study of Mechanics in Brittle-Ductile Cutting Mode Transition
    Xiao, Gaobo
    Ren, Mingjun
    To, Suet
    MICROMACHINES, 2018, 9 (02):
  • [6] Modeling brittle-ductile failure transition with meshfree method
    Wang, S.
    Liu, H.
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2010, 37 (07) : 783 - 791
  • [7] A BRITTLE-DUCTILE TRANSITION IN CRYOCRYSTALS
    LEONTIEVA, AV
    ROMANUSHA, VA
    STEPANCHUK, LV
    FELDMAN, EP
    UKRAINSKII FIZICHESKII ZHURNAL, 1983, 28 (07): : 1025 - 1031
  • [8] Fundamentals of the brittle-ductile transition
    Hirsch, Peter B.
    Transactions of the Japan Institute of Metals, 1989, 30 (11): : 841 - 855
  • [9] ON BRITTLE-DUCTILE TRANSITION PRESSURE
    DOWER, RJ
    ACTA METALLURGICA, 1967, 15 (03): : 497 - &
  • [10] BRITTLE-DUCTILE TRANSITION IN ROCKS
    BYERLEE, JD
    JOURNAL OF GEOPHYSICAL RESEARCH, 1968, 73 (14): : 4741 - +