Subpixel land-cover classification for improved urban area estimates using Landsat

被引:34
|
作者
MacLachlan, Andrew [1 ]
Roberts, Gareth [1 ]
Biggs, Eloise [2 ]
Boruff, Bryan [2 ]
机构
[1] Univ Southampton, Geog & Environm, Southampton, Hants, England
[2] Univ Western Australia, UWA Sch Agr & Environm, Crawley, Australia
基金
英国经济与社会研究理事会;
关键词
SUPPORT VECTOR MACHINES; IMPERVIOUS SURFACE; METROPOLITAN-AREA; RANDOM FORESTS; SATELLITE DATA; DECISION TREE; HEAT-ISLAND; GROWTH; URBANIZATION; WASHINGTON;
D O I
10.1080/01431161.2017.1346403
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Urban areas are Earth's fastest growing land use that impact hydrological and ecological systems and the surface energy balance. The identification and extraction of accurate spatial information relating to urban areas is essential for future sustainable city planning owing to its importance within global environmental change and human-environment interactions. However, monitoring urban expansion using medium resolution (30-250 m) imagery remains challenging due to the variety of surface materials that contribute to measured reflectance resulting in spectrally mixed pixels. This research integrates high spatial resolution orthophotos and Landsat imagery to identify differences across a range of diverse urban subsets within the rapidly expanding Perth Metropolitan Region (PMR), Western Australia. Results indicate that calibrating Landsat-derived subpixel land-cover estimates with correction values (calculated from spatially explicit comparisons of subpixel Landsat values to classified high-resolution data which accounts for over [under] estimations of Landsat) reduces moderate resolution urban area over (under) estimates by on an average 55.08% for thePMR. This approach can be applied to other urban areas globally through use of frequently available and/ or low-cost high spatial resolution imagery (e. g. using Google Earth). This will improve urban growth estimations to help monitor and measure change whilst providing metrics to facilitate sustainable urban development targets within cities around the world.
引用
收藏
页码:5763 / 5792
页数:30
相关论文
共 50 条
  • [1] Multitemporal land-cover classification of Mexico using Landsat MSS imagery
    Alvarez, R
    Bonifaz, R
    Lunetta, RS
    García, C
    Gómez, G
    Castro, R
    Bernal, A
    Cabrera, AL
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2003, 24 (12) : 2501 - 2514
  • [2] Multiobjective Subpixel Land-Cover Mapping
    Ma, Ailong
    Zhong, Yanfei
    He, Da
    Zhang, Liangpei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (01): : 422 - 435
  • [3] Evaluating the uncertainty of area estimates derived from fuzzy land-cover classification
    Canters, F
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 1997, 63 (04): : 403 - 414
  • [4] AN ASSESSMENT OF LANDSAT MSS AND TM DATA FOR URBAN AND NEAR-URBAN LAND-COVER DIGITAL CLASSIFICATION
    HAACK, B
    BRYANT, N
    ADAMS, S
    REMOTE SENSING OF ENVIRONMENT, 1987, 21 (02) : 201 - 213
  • [5] Land-Cover Dynamics in an Urban Area of Ghana
    Braimoh, Ademola K.
    Vlek, Paul L. G.
    EARTH INTERACTIONS, 2004, 8
  • [6] LANDSAT LARGE-AREA ESTIMATES FOR LAND COVER
    MAY, GA
    HOLKO, ML
    JONES, N
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1986, 24 (01): : 175 - 184
  • [7] An automatic approach for urban land-cover classification from Landsat-8 OLI data
    Li, Erzhu
    Du, Peijun
    Samat, Alim
    Xia, Junshi
    Che, Meiqin
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2015, 36 (24) : 5983 - 6007
  • [8] Land-cover change monitoring with classification trees using Landsat TM and ancillary data
    Rogan, J
    Miller, J
    Stow, D
    Franklin, J
    Levien, L
    Fischer, C
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2003, 69 (07): : 793 - 804
  • [9] Land-cover classification using Radarsat and Landsat imagery for St. Louis, Missouri
    Huang, Heng
    Legarsky, Justin
    Othman, Maslina
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2007, 73 (01): : 37 - 43
  • [10] Detecting Urban Land-Use and Land-Cover Changes in Mississauga Using Landsat TM Images
    Li, J.
    Zhao, H. M.
    JOURNAL OF ENVIRONMENTAL INFORMATICS, 2003, 2 (01) : 38 - 47