ON THE AUSLANDER-REITEN CONJECTURE FOR COHEN MACAULAY LOCAL RINGS

被引:14
|
作者
Goto, Shiro [1 ]
Takahashi, Ryo [2 ]
机构
[1] Meiji Univ, Sch Sci & Technol, Dept Math, Tama Ku, 1-1-1 Higashi Mita, Kawasaki, Kanagawa 2148571, Japan
[2] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
关键词
Auslander-Reiten conjecture; Tachikawa conjecture; Gorenstein ring; Cohen-Macaulay ring; semidualizing module;
D O I
10.1090/proc/13487
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies vanishing of Ext modules over Cohen-Macaulay local rings. The main result of this paper implies that the Auslander-Reiten conjecture holds for maximal Cohen-Macaulay modules of rank one over Cohen-Macaulay normal local rings. It also recovers a theorem of Avramov-Buchweitz-S, ega and Hanes-Huneke, which shows that the Tachikawa conjecture holds for Cohen-Macaulay generically Gorenstein local rings.
引用
收藏
页码:3289 / 3296
页数:8
相关论文
共 50 条