Norms and gauges on Clifford Algebra

被引:1
|
作者
Coyette, Cecile [1 ]
机构
[1] ENCBW, Louvain La Neuve, Belgium
关键词
Clifford algebras; gauge; norm; quadratic and bilinear forms; valuation; QUADRATIC-FORMS;
D O I
10.1080/00927872.2018.1444166
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
From a normed quadratic space (V,q), we construct a norm on the Clifford algebra C(V,q). We describe the associated graded form of this norm and give a condition for this norm to be a gauge. Then, we apply our results to prove that for a complete discrete valued field, an anisotropic quadratic form q with dim q = 0 mod 8 and nonsplit Clifford algebra cannot be at the same time a transfer of a K-hermitian form with K/F an inertial quadratic field extension and a transfer of a T-hermitian form with T/F a ramified quadratic field extension.
引用
收藏
页码:4355 / 4376
页数:22
相关论文
共 50 条
  • [1] Clifford Algebra
    Wang Rui
    Zhi Derui
    [J]. 2009 SECOND INTERNATIONAL CONFERENCE ON EDUCATION TECHNOLOGY AND TRAINING, 2009, : 235 - +
  • [2] On Parallelizing the Clifford Algebra Product for CLIFFORD
    Rafał Abłamowicz
    Bertfried Fauser
    [J]. Advances in Applied Clifford Algebras, 2014, 24 : 553 - 567
  • [3] On Parallelizing the Clifford Algebra Product for CLIFFORD
    Ablamowicz, Rafal
    Fauser, Bertfried
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2014, 24 (02) : 553 - 567
  • [4] The Structure of the Clifford Algebra
    Pierre Anglès
    [J]. Advances in Applied Clifford Algebras, 2009, 19
  • [5] Metric clifford algebra
    A. M. Moya
    V. V. Fernández
    W. A. Rodrigues
    [J]. Advances in Applied Clifford Algebras, 2001, 11 (Suppl 3) : 49 - 68
  • [6] Spinors: Clifford algebra
    Crawford, JP
    [J]. CLIFFORD (GEOMETRIC) ALGEBRAS WITH APPLICATIONS TO PHYSICS, MATHEMATICS, AND ENGINEERING, 1996, : 307 - 316
  • [7] Euclidean Clifford algebra
    V. V. Fernández
    A. M. Moya
    W. A. Rodrigues
    [J]. Advances in Applied Clifford Algebras, 2001, 11 (Suppl 3) : 1 - 21
  • [8] SUPER CLIFFORD ALGEBRA
    DIXON, G
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (10) : 2103 - 2107
  • [9] CLIFFORD ALGEBRA COBORDISM
    STONG, RE
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1969, 20 (78): : 177 - &
  • [10] Clifford algebra and flows
    Hagen, H
    Scheuermann, G
    [J]. MATHEMATICAL METHODS FOR CURVES AND SURFACES: OSLO 2000, 2001, : 173 - 182