Topological phase transition and interface states in hybrid plasmonic-photonic systems

被引:11
|
作者
Ge, Lixin [1 ]
Liu, Liang [1 ]
Xiao, Meng [2 ,3 ]
Du, Guiqiang [4 ]
Shi, Lei [5 ,6 ]
Han, Dezhuan [1 ]
Chan, C. T. [7 ,8 ]
Zi, Jian [5 ,6 ]
机构
[1] Chongqing Univ, Dept Appl Phys, Chongqing 401331, Peoples R China
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Ginzton Lab, Stanford, CA 94305 USA
[4] Shandong Univ Weihai, Sch Space Sci & Phys, Weihai 264209, Peoples R China
[5] Fudan Univ, Dept Phys, Key Lab Micro & Nano Photon Struct MOE, Shanghai 200433, Peoples R China
[6] Fudan Univ, Key Lab Surface Phys, Shanghai 200433, Peoples R China
[7] Hong Kong Univ Sci & Technol, Dept Phys, Hong Kong, Hong Kong, Peoples R China
[8] Hong Kong Univ Sci & Technol, Inst Adv Study, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Zak phase; topological phase transition; graphene; interface states; GRAPHENE; WAVES;
D O I
10.1088/2040-8986/aa72a6
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The geometric phase and topological property for one-dimensional hybrid plasmonic-photonic crystals consisting of a simple lattice of graphene sheets are investigated systematically. For transverse magnetic waves, both plasmonic and photonic modes exist in the momentum space. The accidental degeneracy point of these two kinds of modes is identified to be a diabolic point accompanied with a topological phase transition. For a closed loop around this degeneracy point, the Berry phase is pi as a consequence of the discontinuous jump of the geometric Zak phase. The wave impedance is calculated analytically for the semi-infinite system, and the corresponding topological interface states either start from or terminate at the degeneracy point. This type of localized interface state may find potential applications in manipulation of photon emission of quantum dots, optical sensing and enhancement of nonlinear effects, etc.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Formation of Bound States in the Continuum in Hybrid Plasmonic-Photonic Systems
    Azzam, Shaimaa I.
    Shalaev, Vladimir M.
    Boltasseva, Alexandra
    Kildishev, Alexander V.
    PHYSICAL REVIEW LETTERS, 2018, 121 (25)
  • [2] PLASMONIC-PHOTONIC HYBRID NANODEVICE
    Zhang, Taiping
    Belarouci, Ali
    Callard, Segolene
    Romeo, Pedro Rojo
    Letartre, Xavier
    Viktorovitch, Pierre
    INTERNATIONAL JOURNAL OF NANOSCIENCE, 2012, 11 (04)
  • [3] Electromagnetic Field in Hybrid Quantum Plasmonic-Photonic Systems
    Barbiellini, Bernardo
    Das, Subhabrata
    Renugopalakrishnan, Venkatesan
    Somasundaran, Ponniseril
    CONDENSED MATTER, 2018, 3 (02): : 1 - 10
  • [4] Hybrid Colloidal Plasmonic-Photonic Crystals
    Romanov, Sergei G.
    Korovin, Alexander V.
    Regensburger, Alois
    Peschel, Ulf
    ADVANCED MATERIALS, 2011, 23 (22-23) : 2515 - 2533
  • [5] Hybrid Plasmonic-photonic Resonators for Sensing and Spectroscopy
    Chamanzar, Maysamreza
    Hosseini, Ehsan Shah
    Yegnanarayanan, Siva
    Adibi, Ali
    2011 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2011,
  • [6] Hybrid Mode of Optical States in Opal-like Plasmonic-Photonic Crystals
    A. V. Koryukin
    A. A. Akhmadeev
    A. R. Gazizov
    M. Kh. Salakhov
    Plasmonics, 2019, 14 : 961 - 966
  • [7] Hybrid Mode of Optical States in Opal-like Plasmonic-Photonic Crystals
    Koryukin, A., V
    Akhmadeev, A. A.
    Gazizov, A. R.
    Salakhov, M. Kh
    PLASMONICS, 2019, 14 (04) : 961 - 966
  • [8] Detecting a Zeptogram of Pyridine with a Hybrid Plasmonic-Photonic Nanosensor
    Proust, Julien
    Martin, Jerome
    Gerard, Davy
    Bijeon, Jean-Louis
    Plain, Jerome
    ACS SENSORS, 2019, 4 (03): : 586 - 594
  • [9] Effect of dimensionality on the spectra of hybrid plasmonic-photonic crystals
    A. S. Romanova
    A. V. Korovin
    S. G. Romanov
    Physics of the Solid State, 2013, 55 : 1725 - 1732
  • [10] Effect of dimensionality on the spectra of hybrid plasmonic-photonic crystals
    Romanova, A. S.
    Korovin, A. V.
    Romanov, S. G.
    PHYSICS OF THE SOLID STATE, 2013, 55 (08) : 1725 - 1732