Use of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans in the Recovery of Heavy Metals from Landfill Leachates

被引:17
|
作者
Kamizela, Tomasz [1 ]
Grobelak, Anna [1 ]
Worwag, Malgorzata [1 ]
机构
[1] Czestochowa Tech Univ, Fac Infrastruct & Environm, PL-42201 Czestochowa, Poland
关键词
metals recovery; landfill leachate; Acidithiobacillus thiooxidan; Acidithiobacillus ferrooxidans; MICROBIAL COMMUNITY; SEWAGE-SLUDGE; REMOVAL; SOLUBILIZATION; PARAMETERS; PH;
D O I
10.3390/en14113336
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Among the methods used to remove metals and their compounds from landfill leachates with low application costs and high efficiency are bioleaching and biosorption. The most effective bacteria used in the metal removal process are Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. The aim of the study was to determine the usefulness of the A. ferrooxidans and A. thiooxidans population in removing heavy metals from landfill leachate. In addition, development opportunities for bacterial population using landfill leachate as growth medium were identified. The substrate for the research was the raw leachate before the reverse osmosis process. In order to increase the efficiency of trace elements removal and recovery from leachate, variable combinations have been used which differ by the addition of sulfuric acid, A. ferrooxidans culture, A. thiooxidans culture, mixed culture containing populations of both bacteria, and elemental sulfur. Based on the research, it was found that the removal of heavy metals from leachate was a selective process. High bioleaching efficiency, from 80% to 90%, was obtained for all metals for which the sample acidification or sulfur addition was used. The simultaneous combination of both these additives turned out to be the most advantageous. The A. thiooxidans culture was the most effective in bioleaching reverse osmosis effluents. For the A. ferrooxidans culture used, much lower efficiencies were obtained, while by contrast, the use of mixed culture of two bacterium species had no significant effect.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture
    Wang, Jingwei
    Bai, Jianfeng
    Xu, Jinqiu
    Liang, Bo
    JOURNAL OF HAZARDOUS MATERIALS, 2009, 172 (2-3) : 1100 - 1105
  • [2] BIOLEACHING OF METALS FROM ELECTRONIC SCRAP BY PURE AND MIXED CULTURE OF ACIDITHIOBACILLUS FERROOXIDANS AND ACIDITHIOBACILLUS THIOOXIDANS
    Ivanus, Radu Cristian
    METALURGIA INTERNATIONAL, 2010, 15 (04): : 62 - 70
  • [3] Reduction of uranium(VI) by Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans
    Gargarello, R. M.
    Di Gregorio, D.
    Huck, H.
    Niello, J. Fernandez
    Curutchet, G.
    HYDROMETALLURGY, 2010, 104 (3-4) : 529 - 532
  • [4] Microbial leaching of marmatite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans
    王军
    邱冠周
    覃文庆
    张雁生
    Transactions of Nonferrous Metals Society of China, 2006, (04) : 937 - 942
  • [5] Microbial leaching of mannatite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans
    Wang Jun
    Qiu Guan-zhou
    Qin Wen-qing
    Zhang Yan-sheng
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2006, 16 (04) : 937 - 942
  • [6] Reduction of vanadium(V) with Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans
    Bredberg, K
    Karlsson, HT
    Holst, O
    BIORESOURCE TECHNOLOGY, 2004, 92 (01) : 93 - 96
  • [7] The role of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in arsenic bioleaching from soil
    Myoung-Soo Ko
    Hyun-Sung Park
    Kyoung-Woong Kim
    Jong-Un Lee
    Environmental Geochemistry and Health, 2013, 35 : 727 - 733
  • [8] A comparison of bioleaching of covellite using pure cultures of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans or a mixed culture of Leptospirillum ferrooxidans and Acidithiobacillus thiooxidans
    Falco, L
    Pogliani, C
    Curutchet, G
    Donati, E
    HYDROMETALLURGY, 2003, 71 (1-2) : 31 - 36
  • [9] The role of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in arsenic bioleaching from soil
    Ko, Myoung-Soo
    Park, Hyun-Sung
    Kim, Kyoung-Woong
    Lee, Jong-Un
    ENVIRONMENTAL GEOCHEMISTRY AND HEALTH, 2013, 35 (06) : 727 - 733
  • [10] Oxidation of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in shake flasks
    Bevilaqua, D
    Leite, ALLC
    Garcia, O
    Tuovinen, OH
    PROCESS BIOCHEMISTRY, 2002, 38 (04) : 587 - 592