Time-Series Big Data Stream Evaluation

被引:0
|
作者
Mursanto, Petrus [1 ]
Wibisono, Ari [1 ]
Bayu, Wendy D. W. T. [1 ]
Ahli, Valian Fil [1 ]
Rizki, May Iffah [1 ]
Hasani, Lintang Matahari [1 ]
Adibah, Jihan [1 ]
机构
[1] Univ Indonesia, Fac Comp Sci, Depok, Indonesia
关键词
Intelligent Systems; Data Stream; Chernoff Bound; Standard Deviation; FIMT-DD; Big Data;
D O I
10.1109/iwbis50925.2020.9255607
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Big data processing is a challenging job. Extensive time-series data need a method of preparation, management, and feature calculation for each data arrival. FIMT-DD is an algorithm for processing predictive regression for big data. The splitting criteria in the standard FIMT-DD algorithm use a Hoeffding Bound. We propose to change the splitting criteria to Chernoff bound. The experimental results and the performance comparisons that we did have better results than the standard method. We use three real-world datasets. The improvement that we propose can produce a 2.3% accuracy improvement for traffic demand data.
引用
收藏
页码:43 / 47
页数:5
相关论文
共 50 条
  • [1] Distance variable improvement of time-series big data stream evaluation
    Ari Wibisono
    Petrus Mursanto
    Jihan Adibah
    Wendy D. W. T. Bayu
    May Iffah Rizki
    Lintang Matahari Hasani
    Valian Fil Ahli
    [J]. Journal of Big Data, 7
  • [2] Distance variable improvement of time-series big data stream evaluation
    Wibisono, Ari
    Mursanto, Petrus
    Adibah, Jihan
    Bayu, Wendy D. W. T.
    Rizki, May Iffah
    Hasani, Lintang Matahari
    Ahli, Valian Fil
    [J]. JOURNAL OF BIG DATA, 2020, 7 (01)
  • [3] Kennard-Stone Balance Algorithm for Time-series Big Data Stream Mining
    Li, Tengyue
    Fong, Simon
    Wu, Yaoyang
    Tallon-Ballesteros, Antonio J.
    [J]. 20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2020), 2020, : 851 - 858
  • [4] Mining and Forecasting of Big Time-series Data
    Sakurai, Yasushi
    Matsubara, Yasuko
    Faloutsos, Christos
    [J]. SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, : 919 - 922
  • [5] Mining Big Time-series Data on the Web
    Sakurai, Yasushi
    Matsubara, Yasuko
    Faloutsos, Christos
    [J]. PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), 2016, : 1029 - 1032
  • [6] Mining and Forecasting of Big Time-series Data
    Sakurai, Yasushi
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS (PERCOM WORKSHOPS), 2019, : 607 - 607
  • [7] Big Data Analysis for Sensor Time-Series in Automation
    Jirkovsky, Vaclav
    Obitko, Marek
    Novak, Petr
    Kadera, Petr
    [J]. 2014 IEEE EMERGING TECHNOLOGY AND FACTORY AUTOMATION (ETFA), 2014,
  • [8] Real Time Interpretation and Optimization of Time Series Data Stream in Big Data
    Jiang, Zheyuan
    Liu, Ke
    [J]. 2018 IEEE 3RD INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYSIS (ICCCBDA), 2018, : 243 - 247
  • [9] Real-time analysis and management of big time-series data
    Biem, A.
    Feng, H.
    Riabov, A. V.
    Turaga, D. S.
    [J]. IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2013, 57 (3-4)
  • [10] A New Method for Time-Series Big Data Effective Storage
    Tahmassebpour, Mahmoudreza
    [J]. IEEE ACCESS, 2017, 5 : 10694 - 10699