Modeling of Nonlinear Electromagnetic Response in Metasurface

被引:0
|
作者
Fang, Ming [1 ,2 ]
Huang, Zhixiang [1 ]
Wu, Xianliang [1 ]
Sha, Wei E. I. [2 ]
机构
[1] Anhui Univ, Key Lab Intelligent Comp & Signal Proc, Minist Educ, Hefei, Peoples R China
[2] Univ Hong Kong, Dept Elect & Elect Engn, Pokfulam Rd, Hong Kong, Hong Kong, Peoples R China
关键词
METAMATERIALS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
we develop a finite-difference time-domain (FDTD) solution of the hydrodynamic model that describes a free electron gas in metals. Extending beyond the local-linear response, the hydrodynamic model enables numerical investigation of nonlocal and nonlinear interactions between electromagnetic waves and metallic metamaterials. By explicitly imposing the current continuity constraint, the proposed model is solved in a self-consistent manner. Charge, energy and angular momentum conservation laws of high-order harmonic generation have been demonstrated for the first time by the Maxwell-hydrodynamic FDTD model.
引用
收藏
页码:13 / 14
页数:2
相关论文
共 50 条
  • [1] Electromagnetic Modeling of a Magnetless Nonreciprocal Gyrotropic Metasurface
    Sounas, Dimitrios L.
    Kodera, Toshiro
    Caloz, Christophe
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2013, 61 (01) : 221 - 231
  • [2] Ultrathin gradient nonlinear metasurface with a giant nonlinear response
    Nookala, Nishant
    Lee, Jongwon
    Tymchenko, Mykhailo
    Gomez-Diaz, J. Sebastian
    Demmerle, Frederic
    Boehm, Gerhard
    Lai, Kueifu
    Shvets, Gennady
    Amann, Markus-Christian
    Alu, Andrea
    Belkin, Mikhail
    [J]. OPTICA, 2016, 3 (03): : 283 - 288
  • [3] Modeling of plasma combustion ignition on an electromagnetic wave driven metasurface
    Kim, Yunho
    Pederson, Dylan
    Sharma, Ashish
    Subramaniam, Vivek
    Raja, Laxminarayan L.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (24)
  • [4] Generalized Sheet Transition Conditions (GSTCs) in Electromagnetic Metasurface Modeling
    Ghaneizadeh, Alireza
    Joodaki, Mojtaba
    [J]. IEEE ACCESS, 2024, 12 : 74305 - 74326
  • [5] Nonlinear electromagnetic response of electrons
    Fujita, M.
    Koizumi, H.
    Zhang, C.
    Hiraiwa, N.
    Kaneko, K.
    Suwa, F.
    Mitani, T.
    Toyoda, T.
    [J]. LOW TEMPERATURE PHYSICS, PTS A AND B, 2006, 850 : 1534 - +
  • [6] NONLINEAR ELECTROMAGNETIC RESPONSE OF AN ELECTRON LIQUID
    BALDO, M
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1975, 27 (01): : 121 - 133
  • [7] ELECTROMAGNETIC NONLINEAR RESPONSE TO PICOSECOND PULSES
    HOW, H
    ZAYEK, F
    VITTORIA, C
    TROTT, K
    HINDERS, M
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 1991, 27 (05) : 4317 - 4321
  • [8] Modeling of the electromagnetic wavefront sharpening in a nonlinear dielectric
    Rezinkina, M. M.
    Rezinkin, O. L.
    [J]. TECHNICAL PHYSICS, 2011, 56 (03) : 406 - 412
  • [9] Modeling of the electromagnetic wavefront sharpening in a nonlinear dielectric
    M. M. Rezinkina
    O. L. Rezinkin
    [J]. Technical Physics, 2011, 56 : 406 - 412
  • [10] Response clustering for electromagnetic modeling and optimization
    Dorica, M
    Giannacopoulos, DD
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2006, 42 (04) : 1127 - 1130