An Effective Inverse Procedure for Identifying DEMParameters of Rock-Like Materials

被引:14
|
作者
Chen, Rui [1 ,2 ]
Li, Jisheng [1 ,2 ]
Qian, Yangqing [1 ,2 ]
Peng, Ruitao [1 ,2 ]
Jiang, Shengqiang [1 ,2 ]
Hu, Congfang [1 ,2 ]
Zhao, Ziheng [1 ,2 ]
机构
[1] Xiangtan Univ, Sch Mech Engn, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Engn Res Ctr Complex Track Proc Technol & Equipme, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
BONDED-PARTICLE MODEL; IDENTIFICATION; FRACTURE; PARAMETERS; OPTIMIZATION; CALIBRATION; SIMULATION; DESIGN;
D O I
10.1155/2019/6969546
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study aims to identify discrete element model parameters of rock-like materials. An inverse procedure is developed to determine the discrete element model parameters from experimental measurements. This involves the solution of an inverse problem through minimizing the misfit function which describes the error between numerical computation and experiment by an optimization procedure. In this procedure, the discrete element method is adopted as the numerical calculation method of the forward problem. The orthogonal experimental design is used for parameter sensitivity analysis. Besides, the approximation model with radial basis function is adopted instead of the actual calculation model to reduce the time of forward calculation. The ant-colony optimization algorithm is employed as the inverse operator. Therefore, the parameters of the discrete element model are optimized by this procedure. The three-point bending experiment with discrete element simulation is provided to verify the validity and accuracy of the inversion results. The results indicate that it can rapidly obtain the available and reliable model parameters just through a few sets of experimental data. As a result, this inverse procedure can be applied more widely to parameter identification of the discrete element model for brittle materials.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] CREEP OF ROCK-LIKE MATERIALS
    CONSTANTINESCU, M
    CRISTESCU, N
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1983, 21 (01) : 45 - 49
  • [2] STRENGTH OF ROCK-LIKE MATERIALS
    LUNDBORG, N
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 1968, 5 (05): : 427 - &
  • [3] EXPLOSION GENERATED FRACTURES IN ROCK AND ROCK-LIKE MATERIALS
    MOHANTY, B
    ENGINEERING FRACTURE MECHANICS, 1990, 35 (4-5) : 889 - &
  • [4] DAMAGE AND FAILURE OF VISCOPLASTIC ROCK-LIKE MATERIALS
    CRISTESCU, N
    INTERNATIONAL JOURNAL OF PLASTICITY, 1986, 2 (02) : 189 - 204
  • [5] Interaction of frictional cracks in rock-like materials
    Li, Yinping
    Wang, Yuanhan
    Xiao, Sixi
    Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 2003, 22 (04): : 552 - 555
  • [6] SHPB experimental study of rock-like materials
    Yongfeng, D., 1600, E-Journal of Geotechnical Engineering, 214B Engineering South, Stillwater, OK 74078, United States (18 R):
  • [7] Dynamic strength criterion for rock-like materials
    Hu J.
    Yao Y.-P.
    Zhang X.-D.
    Wei Y.-Q.
    Zhang Z.-T.
    Chen Z.-Y.
    Yantu Gongcheng Xuebao/Chinese Journal of Geotechnical Engineering, 2020, 42 (03): : 495 - 502
  • [8] A new discrete element model for rock-like materials
    Zhao, Haiyang
    Zhang, Liangchi
    Wu, Zhonghuai
    Liu, Ang
    COMPUTERS & STRUCTURES, 2022, 261
  • [9] Flexural/Tensile Strength Ratio in Rock-like Materials
    L. Biolzi
    S. Cattaneo
    G. Rosati
    Rock Mechanics and Rock Engineering, 2001, 34 : 217 - 233
  • [10] STRAIN SOFTENING AROUND CAVITIES IN ROCK-LIKE MATERIALS
    GATES, DJ
    MECHANICS OF MATERIALS, 1990, 8 (04) : 309 - 331