A scalable GaN HEMT large-signal model for high-efficiency RF power amplifier design

被引:30
|
作者
Xu, Yuehang [1 ]
Fu, Wenli [2 ]
Wang, Changsi [1 ]
Ren, Chunjiang [3 ]
Lu, Haiyan [3 ]
Zheng, Weibin [4 ]
Yu, Xuming [4 ]
Yan, Bo [1 ]
Xu, Ruimin [1 ]
机构
[1] Univ Elect Sci & Technol China, Fundamental Sci EHF Lab, Chengdu 611731, Peoples R China
[2] China Acad Space Technol Xian, Natl Key Lab Sci & Technol Space Microwave, Xian 710100, Peoples R China
[3] Sci & Technol Monolith Integrated Circuits & Modu, Nanjing 210016, Jiangsu, Peoples R China
[4] Nanjing Elect Devices Inst, Nanjing 210016, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
scalable model; power amplifier; large-signal empirical model; GaN HEMT; ALGAN/GAN HEMTS;
D O I
10.1080/09205071.2014.947440
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a large-signal empirical model for GaN HEMT devices using an improved Angelov drain current formulation with self-heating effect and a modified non-linear capacitance model. The established model for small gate-width GaN HEMTs is validated by on-wafer load-pull measurements up to 14GHz. Moreover, a scalable large-signal model is presented by adding scalable parameters to drain-source current and non-linear capacitance equations. The scalable model of a 1.25mm GaN HEMT has been employed to design a class-AB power amplifier for validation purposes. The results show that good agreement has been achieved between the simulated and measured results with 37.2 dBm saturation output power (P-sat) and 58% maximum power-added-efficiency at 3GHz.
引用
收藏
页码:1888 / 1895
页数:8
相关论文
共 50 条
  • [1] Design of a High-efficiency GaN HEMT RF Power Amplifier
    Wang, Yelin
    Larsen, Torben
    [J]. 2015 INTERNATIONAL SYMPOSIUM ON SIGNALS, CIRCUITS AND SYSTEMS (ISSCS), 2015,
  • [2] A Verilog-A Large-Signal GaN HEMT Model for High Power Amplifier Design
    Kharabi, F.
    McMacken, J. R. F.
    Gering, J. M.
    [J]. 2010 IEEE COMPOUND SEMICONDUCTOR INTEGRATED CIRCUIT SYMPOSIUM (CSICS), 2010,
  • [3] Extraction of Accurate GaN HEMT Model for High-Efficiency Power Amplifier Design
    Vadalal, Valeria
    Raffo, Antonio
    Avolio, Gustavo
    Marchetti, Mauro
    Schreurs, Dominique M. M. -P
    Vannini, Giorgio
    [J]. 2015 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2015,
  • [4] Design of a High Efficiency GaN-HEMT RF Power Amplifier
    Gaddam, Nagavenkat K.
    da Silva, Jose Machado
    [J]. 2015 CONFERENCE ON DESIGN OF CIRCUITS AND INTEGRATED SYSTEMS (DCIS), 2015,
  • [5] Nonlinear Electrothermal GaN HEMT Model Applied to High-Efficiency Power Amplifier Design
    King, Justin B.
    Brazil, Thomas J.
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2013, 61 (01) : 444 - 454
  • [6] A large-signal model of self-aligned gate GaAsFETs for high-efficiency power amplifier design
    Hirose, M
    Kitaura, Y
    Uchitomi, N
    [J]. 1999 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-4, 1999, : 513 - 516
  • [7] A Compact Large-Signal Model Generation of GaN HEMT for RF Circuit Design Implication
    Anand, Anupama
    Reeta
    Narang, Rakhi
    Rawal, Dipendra Singh
    Mishra, Meena
    Saxena, Manoj
    Gupta, Mridula
    [J]. 2023 IEEE WIRELESS ANTENNA AND MICROWAVE SYMPOSIUM, WAMS, 2023,
  • [8] Enhanced GaN HEMT Large-Signal Model With Self-Heating and Trapping Effects for Power Amplifier Design
    Khan, Mehdi
    Qian, Weiqiang
    Huang, Dong
    Li, Lei
    Lin, Fujiang
    [J]. 2015 IEEE MTT-S INTERNATIONAL MICROWAVE WORKSHOP SERIES ON ADVANCED MATERIALS AND PROCESSES FOR RF AND THZ APPLICATIONS (IMWS-AMP), 2015, : 281 - 283
  • [9] Automatic large-signal GaAs HEMT modeling for power amplifier design
    Popov, Artyom
    Bilevich, Dmitry
    Salnikov, Andrei
    Dobush, Igor
    Goryainov, Aleksandr
    Kalentyev, Alexey
    [J]. AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2019, 100 : 138 - 143
  • [10] A large-signal model of self-aligned gate GaAsFET's for high-efficiency power-amplifier design
    Hirose, M
    Kitaura, Y
    Uchitomi, N
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1999, 47 (12) : 2375 - 2381