In order to improve the efficiency of the software intrusion detection system, the author proposes an application based on data mining technology in software intrusion detection and information processing. Apply data mining technology to software intrusion detection; first, analyze and research software intrusion detection technology and data mining technology, including the basic concepts of software intrusion detection, the realization technology of software intrusion detection, the classification of software intrusion detection systems, and the typical software intrusion detection system situation. By detecting and analyzing known intrusion data and using association rules, constructing the inspection system rule base enables the system to learn independently and improve itself and has good scalability, while improving the degree of automation and complete intrusion detection. Experimental results show that under the same test sample, the accuracy of the detection system model designed in this paper is 95.67%, higher than the other three detection systems, and the false alarm rate is lower than other systems, which has certain advantages. It is proved that the system in this paper can help improve the accuracy of software intrusion detection, significantly reduce the false alarm rate and false alarm rate of software intrusion detection, and provide reference for the optimization and improvement of software intrusion detection system and information processing. The system has a certain degree of self-adaptation, which can effectively detect external intrusions.