An Integrated Approach for Identifying Molecular Subtypes in Human Colon Cancer Using Gene Expression Data

被引:5
|
作者
Wang, Wen-Hui [1 ,2 ,3 ]
Xie, Ting-Yan [1 ,2 ]
Xie, Guang-Lei [1 ,2 ]
Ren, Zhong-Lu [4 ,5 ]
Li, Jin-Ming [1 ,2 ]
机构
[1] Southern Med Univ, Div Nephrol, State Key Lab Organ Failure Res, Guangzhou 510515, Guangdong, Peoples R China
[2] Southern Med Univ, Sch Basic Med Sci, Dept Bioinformat, Guangzhou 510515, Guangdong, Peoples R China
[3] Sun Yat Sen Univ, Affiliated Hosp 6, Network Informat Ctr, Guangzhou 510655, Guangdong, Peoples R China
[4] Southern Med Univ, Nanfang Hosp, Dept Obstet & Gynecol, Ctr Syst Med Genet, Guangzhou 510515, Guangdong, Peoples R China
[5] Southern Med Univ, Inst Mental Hlth, Lab Syst Neurosci, Guangzhou 510515, Guangdong, Peoples R China
来源
GENES | 2018年 / 9卷 / 08期
基金
中国国家自然科学基金;
关键词
subtypes of cancer; colon cancer; Bayesian robust principal component; hierarchical clustering; feature selection; PRINCIPAL COMPONENT ANALYSIS; HUMAN COLORECTAL-CANCER; FEATURE-SELECTION; DIFFERENTIAL EVOLUTION; MICROARRAY DATA; POOR-PROGNOSIS; TUMOR INVASION; OVEREXPRESSION; CLASSIFICATION; ASSOCIATION;
D O I
10.3390/genes9080397
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Identifying molecular subtypes of colorectal cancer (CRC) may allow for more rational, patient-specific treatment. Various studies have identified molecular subtypes for CRC using gene expression data, but they are inconsistent and further research is necessary. From a methodological point of view, a progressive approach is needed to identify molecular subtypes in human colon cancer using gene expression data. We propose an approach to identify the molecular subtypes of colon cancer that integrates denoising by the Bayesian robust principal component analysis (BRPCA) algorithm, hierarchical clustering by the directed bubble hierarchical tree (DBHT) algorithm, and feature gene selection by an improved differential evolution based feature selection method (DEFSW) algorithm. In this approach, the normal samples being completely and exclusively clustered into one class is considered to be the standard of reasonable clustering subtypes, and the feature selection pays attention to imbalances of samples among subtypes. With this approach, we identified the molecular subtypes of colon cancer on the mRNA gene expression dataset of 153 colon cancer samples and 19 normal control samples of the Cancer Genome Atlas (TCGA) project. The colon cancer was clustered into 7 subtypes with 44 feature genes. Our approach could identify finer subtypes of colon cancer with fewer feature genes than the other two recent studies and exhibits a generic methodology that might be applied to identify the subtypes of other cancers.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Identifying molecular subtypes in human colon cancer using gene expression and DNA methylation microarray data
    Ren, Zhonglu
    Wang, Wenhui
    Li, Jinming
    [J]. INTERNATIONAL JOURNAL OF ONCOLOGY, 2016, 48 (02) : 690 - 702
  • [2] A hierarchical clustering approach for colorectal cancer molecular subtypes identification from gene expression data
    Raghav, Shivangi
    Suri, Aastha
    Kumar, Deepika
    Aakansha, Aakansha
    Rathore, Muskan
    Roy, Sudipta
    [J]. INTELLIGENT MEDICINE, 2024, 4 (01): : 43 - 51
  • [3] Integrated Analysis of Gene Expression Data for Colon Cancer Biomarker Discovery
    Hassan, Aamir
    Zaka, Masood U. H.
    Kouvatsos, Demetres
    Peng, Yonghong
    [J]. 2015 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2015, : 536 - 541
  • [4] Gene Expression Classification of Colon Cancer into Molecular Subtypes: Characterization, Validation, and Prognostic Value
    Marisa, Laetitia
    de Reynies, Aureline
    Duval, Alex
    Selves, Janick
    Gaub, Marie Pierre
    Vescovo, Laure
    Etienne-Grimaldi, Marie-Christine
    Schiappa, Renaud
    Guenot, Dominique
    Ayadi, Mira
    Kirzin, Sylvain
    Chazal, Maurice
    Flejou, Jean-Francois
    Benchimol, Daniel
    Berger, Anne
    Lagarde, Arnaud
    Pencreach, Erwan
    Piard, Francois
    Elias, Dominique
    Parc, Yann
    Olschwang, Sylviane
    Milano, Gerard
    Laurent-Puig, Pierre
    Boige, Valerie
    [J]. PLOS MEDICINE, 2013, 10 (05)
  • [5] Identifying subtypes in psychosis using gene expression microarray studies
    Choi, K.
    Elashoff, M.
    Webster, M. J.
    Knable, M. B.
    Yolken, R. H.
    Torrey, E. F.
    [J]. SCHIZOPHRENIA BULLETIN, 2007, 33 (02) : 296 - 296
  • [6] Molecular identification of bladder cancer gene expression subtypes
    Chu, In-Sun
    Song, Bic-Na
    Leem, Sun-Hee
    [J]. CANCER RESEARCH, 2018, 78 (13)
  • [7] Biclustering Analysis Using Plaid Model on Gene Expression Data of Colon Cancer
    Siswantining, Titin
    Aminanto, A. Eriza
    Sarwinda, Devvi
    Swasti, Olivia
    [J]. AUSTRIAN JOURNAL OF STATISTICS, 2021, 50 (05) : 101 - 114
  • [8] GLassonet: Identifying Discriminative Gene Sets Among Molecular Subtypes of Breast Cancer
    Liu, Shuhui
    Zhang, Yupei
    Shang, Xuequn
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (03) : 1905 - 1916
  • [9] Identification of immunotherapy and chemotherapy-related molecular subtypes in colon cancer by integrated multi-omics data analysis
    Zhu, Jie
    Kong, Weikaixin
    Huang, Liting
    Bi, Suzhen
    Jiao, Xuelong
    Zhu, Sujie
    [J]. FRONTIERS IN IMMUNOLOGY, 2023, 14
  • [10] Original Characterization of laminin-332 gene expression in molecular subtypes of human bladder cancer
    Walter, Vonn
    DeGraff, David J.
    Yamashita, Hironobu
    [J]. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY, 2022, 10 (05): : 311 - 319