NONLINEAR RANK-ONE MODIFICATION OF THE SYMMETRIC EIGENVALUE PROBLEM
被引:21
|
作者:
Huang, Xin
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R ChinaFudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
Huang, Xin
[1
]
Bai, Zhaojun
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Davis, Dept Comp Sci, Davis, CA 95616 USA
Univ Calif Davis, Dept Math, Davis, CA 95616 USAFudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
Bai, Zhaojun
[2
,3
]
Su, Yangfeng
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R ChinaFudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
Su, Yangfeng
[1
]
机构:
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Univ Calif Davis, Dept Comp Sci, Davis, CA 95616 USA
[3] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
Nonlinear rank-one modification of the symmetric eigenvalue problem arises from eigen-vibrations of mechanical structures with elastically attached loads and calculation of the propagation modes in optical fiber. In this paper, we first study the existence and uniqueness of eigenvalues, and then investigate three numerical algorithms, namely Picard iteration, nonlinear Rayleigh quotient iteration and successive linear approximation method (SLAM). The global convergence of the SLAM is proven under some mild assumptions. Numerical examples illustrate that the SLAM is the most robust method.
机构:
School of Mathematical Sciences, Laurent Mathematics Center, Sichuan Normal University, Chengdu,610066, ChinaSchool of Mathematical Sciences, Laurent Mathematics Center, Sichuan Normal University, Chengdu,610066, China
Xu, Wei-Ru
Shu, Qian-Yu
论文数: 0引用数: 0
h-index: 0
机构:
School of Mathematical Sciences, Laurent Mathematics Center, Sichuan Normal University, Chengdu,610066, ChinaSchool of Mathematical Sciences, Laurent Mathematics Center, Sichuan Normal University, Chengdu,610066, China
Shu, Qian-Yu
Bebiano, Natália
论文数: 0引用数: 0
h-index: 0
机构:
CMUC, Department of Mathematics, University of Coimbra, Coimbra,P 3001-454, PortugalSchool of Mathematical Sciences, Laurent Mathematics Center, Sichuan Normal University, Chengdu,610066, China