The conventional operation of a hydrogen internal combustion engine (ICE) under lean conditions results in low NOx emissions, however, at the cost of power generated. In this study, the power output of a hydrogen-fueled ICE was increased while maintaining the NOx emissions at low levels. The power output was increased by turbocharging, relatively richer operation, and spark timing optimization, whereas a combination of exhaust gas recirculation (EGR) and H2-selective catalytic reduction (H-2-SCR) aftertreatment was used to reduce NOx emissions. Turbocharging resulted in a maximum torque output of 168 N center dot M at 3200 rpm as compared to 70 Nm at 1600rpm for the naturally aspirated operation. However, the turbocharger could not generate enough boost at low speeds and the equivalence ratio was increased to obtain a high power output which resulted in a substantial increase in the NOx emissions. The use of EGR resulted in an average reduction of 72% in the NOx emissions. Retarding of spark timing significantly reduced the NOx emissions too, but was limited by the adverse impact on the torque. Since hydrogen would be available onboard a hydrogen-fueled vehicle, we for the first time report external injection of H-2 for use as a reductant in the selective catalytic reduction unit. Even under extremely oxidizing conditions, the efficiency of aftertreatment was found to be 35.4% averaged over various speeds. A maximum of 83.7% overall reduction in NOx emissions was achieved by using the combined EGR and H-2-SCR strategies.