Spin accumulation in diffusive conductors with Rashba and Dresselhaus spin-orbit interaction

被引:26
|
作者
Duckheim, Mathias [1 ]
Loss, Daniel [1 ]
Scheid, Matthias [2 ]
Richter, Klaus [2 ]
Adagideli, Inanc [3 ]
Jacquod, Philippe [4 ]
机构
[1] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland
[2] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany
[3] Sabanci Univ, Fac Engn & Nat Sci, TR-34956 Istanbul, Turkey
[4] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA
基金
美国国家科学基金会;
关键词
ELECTRIC-CURRENT; MAGNETIC-FIELD; HALL; FLUCTUATIONS; ORIENTATION; CHARGE; POLARIZATION; RESONANCE;
D O I
10.1103/PhysRevB.81.085303
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We calculate the electrically induced spin accumulation in diffusive systems due to both Rashba (with strength alpha) and Dresselhaus (with strength beta) spin-orbit interaction. Using a diffusion equation approach we find that magnetoelectric effects disappear and that there is thus no spin accumulation when both interactions have the same strength, alpha = +/- beta. In thermodynamically large systems, the finite spin accumulation predicted by Chaplik, Entin, and Magarill [Physica E 13, 744 (2002)] and by Trushin and Schliemann [Phys. Rev. B 75, 155323 (2007)] is recovered an infinitesimally small distance away from the singular point alpha = +/- beta. We show however that the singularity is broadened and that the suppression of spin accumulation becomes physically relevant (i) in finite-sized systems of size L, (ii) in the presence of a cubic Dresselhaus interaction of strength gamma, or (iii) for finite-frequency measurements. We obtain the parametric range over which the magnetoelectric effect is suppressed in these three instances as (i) vertical bar alpha vertical bar-vertical bar beta vertical bar <= 1/mL, (ii) vertical bar alpha vertical bar-vertical bar beta vertical bar less than or similar to gamma p(F)(2), and (iii) vertical bar alpha vertical bar-vertical bar beta vertical bar less than or similar to root omega/mp(F)l with l the elastic mean-free path and pF the Fermi momentum. We attribute the absence of spin accumulation close to alpha = +/-beta to the underlying U(1) symmetry. We illustrate and confirm our predictions numerically.
引用
下载
收藏
页数:7
相关论文
共 50 条
  • [1] Current-induced spin accumulation in lateral superlattices with Rashba and Dresselhaus spin-orbit interaction
    Kleinert, P.
    Bryksin, V. V.
    SUPERLATTICES AND MICROSTRUCTURES, 2006, 39 (05) : 421 - 428
  • [2] Rashba and Dresselhaus spin-orbit interaction in semiconductor quantum wells
    Hao, Y. F.
    EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (02):
  • [3] Rashba and Dresselhaus spin-orbit interaction in semiconductor quantum wells
    Y. F. Hao
    The European Physical Journal B, 2012, 85
  • [4] Determination of Rashba and Dresselhaus spin-orbit fields
    Maiti, Santanu K.
    JOURNAL OF APPLIED PHYSICS, 2011, 110 (06)
  • [5] Rashba and Dresselhaus spin-orbit interaction strength in GaAs/GaAlAs heterojunctions
    Toloza Sandoval, M. A.
    Ferreira da Silva, A.
    de Andrada e Silva, E. A.
    La Rocca, G. C.
    15TH BRAZILIAN WORKSHOP ON SEMICONDUCTOR PHYSICS, 2012, 28 : 95 - 98
  • [6] Weak localization in a lateral superlattice with Rashba and Dresselhaus spin-orbit interaction
    Marinescu, D. C.
    Manolescu, Andrei
    PHYSICAL REVIEW B, 2012, 85 (16):
  • [7] Ballistic spin interferometer based on the Rashba and Dresselhaus spin-orbit interactions
    Ni, Jiating
    Chen, Bin
    Koga, T.
    PHYSICS LETTERS A, 2008, 372 (38) : 6026 - 6031
  • [8] Spin remagnetization excitations in semiconductors with Rashba and Dresselhaus spin-orbit coupling
    Kleinert, P.
    SOLID STATE COMMUNICATIONS, 2009, 149 (45-46) : 2024 - 2026
  • [9] Measurement of Rashba and Dresselhaus spin-orbit magnetic fields
    Meier, Lorenz
    Salis, Gian
    Shorubalko, Ivan
    Gini, Emilio
    Schoen, Silke
    Ensslin, Klaus
    NATURE PHYSICS, 2007, 3 (09) : 650 - 654
  • [10] Magnetoelectric effects in semiconductor quantum wells with Rashba and Dresselhaus spin-orbit interaction
    Kleinert, P.
    Bryksin, V. V.
    SOLID STATE COMMUNICATIONS, 2008, 146 (11-12) : 438 - 440