A Hierarchical Model for Lithium-Ion Battery Degradation Prediction

被引:36
|
作者
Xu, Xin [1 ]
Li, Zhiguo [1 ,2 ]
Chen, Nan [1 ]
机构
[1] Natl Univ Singapore, Dept Ind & Syst Engn, Singapore 117576, Singapore
[2] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
基金
新加坡国家研究基金会;
关键词
Degradation; discharging profile; Gibbs sampling; hierarchical model; lithium-ion battery; remaining useful cycles; smoothing spline; REMAINING USEFUL LIFE; PARTICLE SWARM OPTIMIZATION; PROGNOSTICS;
D O I
10.1109/TR.2015.2451074
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Developing prognostics and health management (PHM) approaches for lithium-ion batteries has received increasing attention in recent years. This paper presents a new modeling framework to characterize lithium-ion battery degradation by examining detailed discharging voltage profiles in different discharging cycles. We propose a hierarchical model, combining discharging processes and degradation processes, to predict the end of discharges in different cycles and remaining useful cycles integratively. We use a real case study to demonstrate the effectiveness and promising features of the proposed framework.
引用
收藏
页码:310 / 325
页数:16
相关论文
共 50 条
  • [1] Lithium-ion battery degradation: how to model it
    O'Kane, Simon E. J.
    Ai, Weilong
    Madabattula, Ganesh
    Alonso-Alvarez, Diego
    Timms, Robert
    Sulzer, Valentin
    Edge, Jacqueline Sophie
    Wu, Billy
    Offer, Gregory J.
    Marinescu, Monica
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (13) : 7909 - 7922
  • [2] Study on Prediction Model of Performance and Degradation of LFP/Graphite Lithium-ion Battery
    Hashimoto, Tsutomu
    Munakata, Hirokazu
    Kanamura, Kiyoshi
    [J]. ELECTROCHEMISTRY, 2021, 89 (03) : 303 - 312
  • [3] Lithium-Ion Battery Degradation and Capacity Prediction Model Considering Causal Feature
    Tian, Yi
    He, Jiabei
    Peng, Zhen
    Guan, Yong
    Wu, Lifeng
    [J]. IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2022, 8 (03): : 3630 - 3647
  • [4] A Lithium-Ion Battery Degradation Prediction Model With Uncertainty Quantification for Its Predictive Maintenance
    Chen, Chuang
    Tao, Guanye
    Shi, Jiantao
    Shen, Mouquan
    Zhu, Zheng Hong
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (04) : 3650 - 3659
  • [5] An Empirical-Informed Model for the Early Degradation Trajectory Prediction of Lithium-ion Battery
    Meng, Jinhao
    Cai, Lei
    Yang, Shengxiang
    Li, Junxin
    Zhou, Feifan
    Peng, Jichang
    Song, Zhengxiang
    [J]. IEEE Transactions on Energy Conversion, 2024, 39 (04) : 2299 - 2311
  • [6] Prediction of compression force evolution over degradation for a lithium-ion battery
    Kwak, Eunji
    Jeong, Siheon
    Kim, Jun-hyeong
    Oh, Ki-Yong
    [J]. JOURNAL OF POWER SOURCES, 2021, 483
  • [7] Life prediction of lithium-ion battery based on a hybrid model
    Chen, Xu-Dong
    Yang, Hai-Yue
    Wun, Jhang-Shang
    Wang, Ching-Hsin
    Li, Ling-Ling
    [J]. ENERGY EXPLORATION & EXPLOITATION, 2020, 38 (05) : 1854 - 1878
  • [8] Prediction of lithium-ion battery capacity with metabolic grey model
    Chen, Lin
    Lin, Weilong
    Li, Junzi
    Tian, Binbin
    Pan, Haihong
    [J]. ENERGY, 2016, 106 : 662 - 672
  • [9] Lithium-ion Battery Degradation Assessment in Microgrids
    Jimenez, Diego
    Ortiz-Villalba, Diego
    Perez, Aramis
    Orchard, Marcos E.
    [J]. 2018 IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING (ROPEC), 2018,
  • [10] In situ monitoring of lithium-ion battery degradation using an electrochemical model
    Lyu, Chao
    Song, Yankong
    Zheng, Jun
    Luo, Weilin
    Hinds, Gareth
    Li, Junfu
    Wang, Lixin
    [J]. APPLIED ENERGY, 2019, 250 : 685 - 696