Derivations with invertible or nilpotent values on a multilinear polynomial

被引:1
|
作者
Lee, PH [1 ]
Wong, TL [1 ]
机构
[1] Natl Taiwan Univ, Dept Math, Taipei 106, Taiwan
关键词
derivation; prime ring; multilinear polynomial; Lie ideal;
D O I
10.1007/s10011-000-0093-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a prime ring with no non-zero nil one-sided ideals, d a nonzero derivation on R, and f(X-1,...,X-t) a multilinear polynomial not central-valued on R. Suppose d(f(x(1),...,x(t))) is either invertible or nilpotent for all x(1),...,x(t) in some non-zero ideal of R. Then it is proved that R is either a division ring or the ring of 2x2 matrices over a division ring. This theorem is a simultaneous generalization of a number of results proved earlier. 1991 Mathematics Subject Classification: primary 16W25, secondary 16R50, 16N60, 16U80.
引用
收藏
页码:93 / 98
页数:6
相关论文
共 50 条