A General Procedure for Testing Inequality Constrained Hypotheses in SEM

被引:1
|
作者
Vanbrabant, Leonard [1 ,2 ]
Van de Schoot, Rens [2 ,3 ]
Van Loey, Nancy [4 ]
Rosseel, Yves [1 ]
机构
[1] Univ Ghent, Fac Psychol & Educ Sci, Dept Data Anal, Henri Dunantlaan 1, B-9000 Ghent, Belgium
[2] Univ Utrecht, Fac Social Sci, Dept Methods & Stat, Utrecht, Netherlands
[3] North West Univ, Optentia Res Program, Vanderbijlpark, South Africa
[4] Assoc Dutch Burn Ctr, Dept Clin & Hlth Psychol, Beverwijk, Netherlands
关键词
(double) bootstrap; chi-square mixtures; informative hypothesis testing; LR statistic; order/inequality constraints; EVALUATING EXPECTATIONS; FORTRAN-90; PROGRAM; BOOTSTRAP; DEPRESSION;
D O I
10.1027/1614-2241/a000123
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Researchers in the social and behavioral sciences often have clear expectations about the order and/or the sign of the parameters in their statistical model. For example, a researcher might expect that regression coefficient beta(1) is larger than regression coefficients beta(2) and beta(3). To test such a constrained hypothesis special methods have been developed. However, the existing methods for structural equation models (SEM) are complex, computationally demanding, and a software routine is lacking. Therefore, in this paper we describe a general procedure for testing order/inequality constrained hypotheses in SEM using the R package lavaan. We use the likelihood ratio (LR) statistic to test constrained hypotheses and the resulting plug-in p value is computed by either parametric or Bollen-Stine bootstrapping. Since the obtained plug-in p value can be biased, a double bootstrap approach is available. The procedure is illustrated by a real-life example about the psychosocial functioning in patients with facial burn wounds.
引用
收藏
页码:61 / 70
页数:10
相关论文
共 50 条
  • [1] Testing Inequality Constrained Hypotheses in SEM Models
    van de Schoot, Rens
    Hoijtink, Herbert
    Dekovic, Maja
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2010, 17 (03) : 443 - 463
  • [2] Bayesian Evaluation of Inequality-Constrained Hypotheses in SEM Models Using Mplus
    van de Schoot, Rens
    Hoijtink, Herbert
    Hallquist, Michael N.
    Boelen, Paul A.
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2012, 19 (04) : 593 - 609
  • [3] Bayes factors for testing inequality constrained hypotheses: Issues with prior specification
    Mulder, Joris
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2014, 67 (01): : 153 - 171
  • [4] Bayesian Evaluation of Inequality Constrained Hypotheses
    Gu, Xin
    Mulder, Joris
    Dekovic, Maja
    Hoijtink, Herbert
    [J]. PSYCHOLOGICAL METHODS, 2014, 19 (04) : 511 - 527
  • [5] A Szekely-Rizzo inequality for testing general copula homogeneity hypotheses
    Quessy, Jean-Francois
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2021, 186
  • [6] Automatic Bayes Factors for Testing Equality- and Inequality-Constrained Hypotheses on Variances
    Boing-Messing, Florian
    Mulder, Joris
    [J]. PSYCHOMETRIKA, 2018, 83 (03) : 586 - 617
  • [7] Automatic Bayes Factors for Testing Equality- and Inequality-Constrained Hypotheses on Variances
    Florian Böing-Messing
    Joris Mulder
    [J]. Psychometrika, 2018, 83 : 586 - 617
  • [8] Objective Bayes Factors for Inequality Constrained Hypotheses
    Hoijtink, Herbert
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2013, 81 (02) : 207 - 229
  • [9] On one useful inequality in testing of hypotheses
    Burnashev, MV
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) : 1668 - 1670
  • [10] Evaluation of Inequality Constrained Hypotheses Using a Generalization of the AIC
    Altinisik, Yasin
    Van Lissa, Caspar J.
    Hoijtink, Herbert
    Oldehinkel, Albertine J.
    Kuiper, Rebecca M.
    [J]. PSYCHOLOGICAL METHODS, 2021, 26 (05) : 599 - 621