Einstein metrics on principal circle bundles

被引:2
|
作者
Wang, J [1 ]
机构
[1] MCMASTER UNIV,DEPT MATH & STAT,HAMILTON,ON L8S 4K1,CANADA
关键词
Einstein metric; Kahler manifold; principal bundle; foliation;
D O I
10.1016/S0926-2245(97)00012-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be a compact Kahler manifold and P a principal circle bundle over M with a connection. We can define a metric on P by horizontal lifting of the metric from M. We will prove that M is a product of compact Kahler-Einstein manifolds with positive first Chern classes and the Euler class of P is determined by the first Chern classes of the Kahler-Einstein manifolds in the base M as described by M.Y. Wang and W. Ziller in 1990 if P is Einstein and the curvature form of the connection is of type (1, 1).
引用
收藏
页码:377 / 387
页数:11
相关论文
共 50 条
  • [1] EINSTEIN-METRICS ON PRINCIPAL TORUS BUNDLES
    WANG, MY
    ZILLER, W
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1990, 31 (01) : 215 - 248
  • [2] Kähler-Einstein metrics and obstruction flatness of circle bundles
    Ebenfelt, Peter
    Xiao, Ming
    Xu, Hang
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 177 : 368 - 414
  • [3] Contact structures on principal circle bundles
    Ding, Fan
    Geiges, Hansjoerg
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2012, 44 : 1189 - 1202
  • [4] Stability of Einstein Metrics on Fiber Bundles
    Wang, Changliang
    Wang, Y. K.
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (01) : 490 - 515
  • [5] Stability of Einstein Metrics on Fiber Bundles
    Changliang Wang
    Y. K. Wang
    The Journal of Geometric Analysis, 2021, 31 : 490 - 515
  • [6] Einstein metrics on tangent bundles of spheres
    Dancer, AS
    Strachan, IAB
    CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (18) : 4663 - 4670
  • [7] DIRAC OPERATORS ON NONCOMMUTATIVE PRINCIPAL CIRCLE BUNDLES
    Dabrowski, Ludwik
    Sitarz, Andrzej
    Zucca, Alessandro
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2014, 11 (01)
  • [8] Einstein metrics on S2-bundles
    Wang, J
    Wang, MY
    MATHEMATISCHE ANNALEN, 1998, 310 (03) : 497 - 526
  • [9] EINSTEIN-METRICS ON QUATERNIONIC LINE BUNDLES
    PAGE, DN
    POPE, CN
    CLASSICAL AND QUANTUM GRAVITY, 1986, 3 (02) : 249 - 259
  • [10] Quasi-Einstein metrics on sphere bundles
    Huang, Solomon
    Murphy, Tommy
    Phan, Thanh Nhan
    INVOLVE, A JOURNAL OF MATHEMATICS, 2022, 15 (03): : 507 - 514