Limit Optimal Trajectories in Zero-Sum Stochastic Games

被引:4
|
作者
Sorin, Sylvain [1 ]
Vigeral, Guillaume [2 ]
机构
[1] UPMC Paris 06, Sorbonne Univ, CNRS, Inst Math Jussieu Paris Rive Gauche,UMR 7586, F-75005 Paris, France
[2] Univ Paris 09, PSL Res Univ, CNRS, CEREMADE, Pl Marechal De Lattre de Tassigny, F-75775 Paris 16, France
关键词
Zero-sum; Stochastic game; Absorbing game; ASYMPTOTIC VALUE; EXISTENCE;
D O I
10.1007/s13235-019-00333-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider zero-sum stochastic games. For every discount factor lambda, a time normalization allows to represent the discounted game as being played during the interval [0, 1]. We introduce the trajectories of cumulated expected payoff and of cumulated occupation measure on the state space up to time t is an element of[0,1], under epsilon-optimal strategies. A limit optimal trajectory is defined as an accumulation point as (lambda,epsilon) tend to 0. We study existence, uniqueness and characterization of these limit optimal trajectories for compact absorbing games.
引用
收藏
页码:555 / 572
页数:18
相关论文
共 50 条
  • [1] Limit Optimal Trajectories in Zero-Sum Stochastic Games
    Sylvain Sorin
    Guillaume Vigeral
    [J]. Dynamic Games and Applications, 2020, 10 : 555 - 572
  • [2] General limit value in zero-sum stochastic games
    Ziliotto, Bruno
    [J]. INTERNATIONAL JOURNAL OF GAME THEORY, 2016, 45 (1-2) : 353 - 374
  • [3] General limit value in zero-sum stochastic games
    Bruno Ziliotto
    [J]. International Journal of Game Theory, 2016, 45 : 353 - 374
  • [4] Optimal strategies in a class of zero-sum ergodic stochastic games
    Andrzej S. Nowak
    [J]. Mathematical Methods of Operations Research, 1999, 50 : 399 - 419
  • [5] Optimal strategies in a class of zero-sum ergodic stochastic games
    Nowak, AS
    [J]. MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 1999, 50 (03) : 399 - 419
  • [6] Zero-sum ergodic stochastic games
    Jaskiewicz, Anna
    Nowak, Andrzej S.
    [J]. 2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 1741 - 1746
  • [7] Definable Zero-Sum Stochastic Games
    Bolte, Jerome
    Gaubert, Stephane
    Vigeral, Guillaume
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2015, 40 (01) : 171 - 191
  • [8] Zero-Sum Stochastic Stackelberg Games
    Goktas, Denizalp
    Zhao, Jiayi
    Greenwald, Amy
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [9] On Zero-Sum Optimal Stopping Games
    Erhan Bayraktar
    Zhou Zhou
    [J]. Applied Mathematics & Optimization, 2018, 78 : 457 - 468
  • [10] On Zero-Sum Optimal Stopping Games
    Bayraktar, Erhan
    Zhou, Zhou
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2018, 78 (03): : 457 - 468