Applying Artificial Neural Network to Optimize the Performance of the Compressor Station: A Case Study

被引:2
|
作者
Duracic, Ivan [1 ]
Stojkov, Marinko [1 ]
Saric, Tomislav [1 ]
Alinjak, Tomislav [2 ]
Crnogorac, Kresimir [3 ]
机构
[1] Univ Slavonski Brod, Mech Engn Fac, Trg IB Mazuranic 2, Slavonskibrod 35000, Croatia
[2] HEP ODS doo Zagreb, Elektra Slavonski Brod, P Kresimira IV 11, Slavonskibrod 35000, Croatia
[3] CONSTRUO MAT doo, Trg Ignjata Alojza Brlica 4, Slavonski Brod, Croatia
来源
TEHNICKI VJESNIK-TECHNICAL GAZETTE | 2021年 / 28卷 / 04期
关键词
compressor; fan; IoT; neural network; optimization; preventive maintenance; PREDICTION; LOGIC; SYSTEM;
D O I
10.17559/TV-20200926113750
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents the implementation of a reprogrammable PLC system as a monitoring control tool in the actual operating environment of a compressor station. A neural network is used to recognize the temperature pattern and to predict the temperature on the compressor station. A cooling system is installed for the optimization purpose of the observed system. The research was conducted in three stages in real working conditions within the production hall. The difference in temperatures with and without the added cooling system is shown. There are gaps in this research that represent opportunities for future development, therefore recommendations for further research are given.
引用
收藏
页码:1197 / 1202
页数:6
相关论文
共 50 条
  • [1] Prediction of performance parameters of a hermetic reciprocating compressor applying an artificial neural network
    Bacak, Aykut
    Colak, Andac Batur
    Dalkilic, Ahmet Selim
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2024,
  • [2] Modeling of rotary vane compressor applying artificial neural network
    Sanaye, Sepehr
    Dehghandokht, Masoud
    Mohammadbeigi, Hassan
    Bahrami, Salman
    [J]. INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2011, 34 (03): : 764 - 772
  • [3] An artificial neural network approach to compressor performance prediction
    Ghorbanian, K.
    Gholamrezaei, M.
    [J]. APPLIED ENERGY, 2009, 86 (7-8) : 1210 - 1221
  • [4] Using Genetic Algorithm to Optimize Artificial Neural Network: A Case Study on Earthquake Prediction
    Zhang, Qiuwen
    Wang, Cheng
    [J]. SECOND INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTING: WGEC 2008, PROCEEDINGS, 2008, : 128 - 131
  • [5] Applying the Artificial Neural Network and Response Surface Methodology to Optimize the Drilling Process of Plywood
    Bedelean, Bogdan
    Ispas, Mihai
    Racasan, Sergiu
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (20):
  • [6] Axial compressor performance map prediction using artificial neural network
    Ghorbanian, Kaveh
    Gholamrezaei, Mohammad
    [J]. Proceedings of the ASME Turbo Expo 2007, Vol 6, Pts A and B, 2007, : 1199 - 1208
  • [7] Development of an automated compressor performance mapping using artificial neural network and multiple compressor technologies
    Ma, Jie
    Ding, Xin
    Horton, W. Travis
    Ziviani, Davide
    [J]. INTERNATIONAL JOURNAL OF REFRIGERATION, 2020, 120 : 66 - 80
  • [8] Development of an automated compressor performance mapping using artificial neural network and multiple compressor technologies
    Développement d'une cartographie automatisée des performances des compresseurs en utilisant les technologies des réseaux neuronaux artificiels et des compresseurs multiples
    [J]. Ma, Jie (ma319@purdue.edu), 1600, Elsevier Ltd (120): : 66 - 80
  • [9] Performance Study of Solid State Transformer Applying BP Artificial Neural Network PID Regulator
    Wang, Qingshan
    Liang, Deliang
    Du, Jinhua
    [J]. 2014 17TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS), 2014, : 2440 - 2444
  • [10] A combination of artificial neural network and genetic algorithm to optimize gas injection: A case study for EOR applications
    Javadi, Arash
    Moslemizadeh, Aghil
    Moluki, Vahid Sheikhol
    Fathianpour, Nader
    Mohammadzadeh, Omid
    Zendehboudi, Sohrab
    [J]. JOURNAL OF MOLECULAR LIQUIDS, 2021, 339