共 50 条
RETRACTED: A Novel Hybrid Deep Learning Approach for Skin Lesion Segmentation and Classification (Retracted Article)
被引:27
|作者:
Thapar, Puneet
[1
]
Rakhra, Manik
[1
]
Cazzato, Gerardo
[2
]
Hossain, Md Shamim
[3
]
机构:
[1] Lovely Profess Univ, Dept Comp Sci & Engn, Phagwara, Punjab, India
[2] Univ Bari Aldo Moro, Dept Emergency & Organ Transplantat DETO, Sect Pathol, Bari, BA, Italy
[3] Hajee Mohammad Danesh Sci & Technol Univ, Dept Mkt, Dinajpur, Bangladesh
关键词:
DERMOSCOPY IMAGES;
FEATURE FUSION;
MELANOMA;
D O I:
10.1155/2022/1709842
中图分类号:
R19 [保健组织与事业(卫生事业管理)];
学科分类号:
摘要:
Skin cancer is one of the most common diseases that can be initially detected by visual observation and further with the help of dermoscopic analysis and other tests. As at an initial stage, visual observation gives the opportunity of utilizing artificial intelligence to intercept the different skin images, so several skin lesion classification methods using deep learning based on convolution neural network (CNN) and annotated skin photos exhibit improved results. In this respect, the paper presents a reliable approach for diagnosing skin cancer utilizing dermoscopy images in order to improve health care professionals' visual perception and diagnostic abilities to discriminate benign from malignant lesions. The swarm intelligence (SI) algorithms were used for skin lesion region of interest (RoI) segmentation from dermoscopy images, and the speeded-up robust features (SURF) was used for feature extraction of the RoI marked as the best segmentation result obtained using the Grasshopper Optimization Algorithm (GOA). The skin lesions are classified into two groups using CNN against three data sets, namely, ISIC-2017, ISIC-2018, and PH-2 data sets. The proposed segmentation and classification techniques' results are assessed in terms of classification accuracy, sensitivity, specificity, F-measure, precision, MCC, dice coefficient, and Jaccard index, with an average classification accuracy of 98.42 percent, precision of 97.73 percent, and MCC of 0.9704 percent. In every performance measure, our suggested strategy exceeds previous work.
引用
收藏
页数:21
相关论文