Iterated integrals of polynomials

被引:1
|
作者
Hetmaniok, Edyta [1 ]
Lorenc, Piotr [1 ]
Pleszczynski, Mariusz [1 ]
Witula, Roman [1 ]
机构
[1] Silesian Tech Univ, Inst Math, PL-44100 Gliwice, Poland
关键词
Iterated polynomials; Real polynomials; Hyperbolic polynomials; ROOTS; ZEROS;
D O I
10.1016/j.amc.2014.10.057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper concerns the decompositions of polynomials onto iterated integrals. This is a continuation of our previous paper (Lorenc, submitted for publication), in which the existence of such decomposition for the Faulhaber polynomials is proven. In the current paper we prove the basic theorem (Theorem 2) presenting the necessary and sufficient conditions for the existence of such decomposition. We discuss these conditions in the wider context of theory of the real and complex polynomials. A number of exemplary decompositions onto iterated integrals of the known classical kinds of polynomials are also presented. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:389 / 398
页数:10
相关论文
共 50 条
  • [1] Iterated Integrals of Jacobi Polynomials
    Pijeira-Cabrera, Hector
    Rivero-Castillo, Daniel
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (03) : 2745 - 2756
  • [2] ZEROS OF ITERATED INTEGRALS OF POLYNOMIALS
    BORWEIN, PB
    CHEN, WY
    DILCHER, K
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1995, 47 (01): : 65 - 87
  • [3] Iterated Integrals of Jacobi Polynomials
    Hector Pijeira-Cabrera
    Daniel Rivero-Castillo
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 2745 - 2756
  • [4] Iterated Integrals and Borwein–Chen–Dilcher Polynomials
    Manuel Bello-Hernández
    Héctor Pijeira-Cabrera
    Daniel Rivero-Castillo
    [J]. Mediterranean Journal of Mathematics, 2020, 17
  • [5] Iterated Integrals and Borwein-Chen-Dilcher Polynomials
    Bello-Hernandez, Manuel
    Pijeira-Cabrera, Hector
    Rivero-Castillo, Daniel
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (05)
  • [6] CHENS ITERATED INTEGRALS
    GUGENHEIM, VKAM
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 1977, 21 (03) : 703 - 715
  • [7] ITERATED SHIMURA INTEGRALS
    Manin, Yuri I.
    [J]. MOSCOW MATHEMATICAL JOURNAL, 2005, 5 (04) : 869 - 881
  • [8] Cumulants as iterated integrals
    Lehner, Franz
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (04) : 1448 - 1454
  • [9] ITERATED PATH INTEGRALS
    CHEN, KT
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (03): : A426 - A426
  • [10] Multisummability of iterated integrals
    Balser, W.
    Tovis, A.
    [J]. Asymptotic Analysis, 1993, 7 (02) : 121 - 127