First-principles study on the dissolution and diffusion behavior of hydrogen in carbide precipitates

被引:20
|
作者
Li, Yifan [1 ]
Zhang, Xingming [1 ]
Wu, Tiantian [1 ]
Tang, Jianfeng [1 ]
Deng, Lei [1 ]
Li, Wei [1 ]
Wang, Liang [1 ]
Deng, Huiqiu [2 ]
Hu, Wangyu [3 ]
机构
[1] Hunan Agr Univ, Sch Chem & Mat Sci, Changsha 410128, Peoples R China
[2] Hunan Univ, Sch Phys & Elect, Dept Appl Phys, Changsha 410082, Peoples R China
[3] Hunan Univ, Coll Mat Sci & Engn, Changsha 410082, Peoples R China
关键词
First-principles calculations; Carbide; Interstitial hydrogen; Solubility; Diffusion coefficient; MECHANICAL-PROPERTIES; VANADIUM CARBIDE; SOLUBILITY; CR; TI; EMBRITTLEMENT; STABILITY; MEMBRANES; MO;
D O I
10.1016/j.ijhydene.2021.04.056
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To understand the hydrogen (H) behavior in the carbide precipitates, the dissolution and diffusion properties of interstitial H in the transition metal carbide (TMC; TM = Hf, Nb, Ta, Ti, V, and Zr) were studied by first-principles calculations. In these carbides, it can be seen that H tends to occupy the trigonal site (tri2-site) surrounded by three transition metal atoms and one carbon atom rather than the face center (fc-site) and the body center (bcsite) which with the larger space. We found that the bonding interaction between H atom and the nearest-neighbor (1NN) carbon atom is the dominant influence on the stability of H dissolution. Besides, we obtained the temperature-dependent solubility and diffusion coefficients of H in TMC and pure vanadium through Sievert's law and transition state theory. Compared with pure vanadium, H shows the worse solubility in TMC, and it is more difficult for hydrogen to migrate in TMC, but segregate toward the interface. Furthermore, it is interesting to note that, the diffusion barrier and the H solution energy show a linear relationship for transition metal carbides in the same period. These results can help us deepen the understanding of H behavior in vanadium alloys strengthened by carbide precipitates, and furtherly providing the theoretical guidance for the design of alloys with excellent performance. (C) 2021 Hydrogen Energy Publications LLC.
引用
收藏
页码:22030 / 22039
页数:10
相关论文
共 50 条
  • [1] First-principles study on dissolution and diffusion properties of hydrogen in molybdenum
    Duan, Chen
    Liu, Yue-Lin
    Zhou, Hong-Bo
    Zhang, Ying
    Jin, Shuo
    Lu, Guang-Hong
    Luo, G. -N.
    JOURNAL OF NUCLEAR MATERIALS, 2010, 404 (02) : 109 - 115
  • [2] Dissolution, diffusion and permeation behavior of hydrogen in vanadium: a first-principles investigation
    Luo, Jian
    Zhou, Hong-Bo
    Liu, Yue-Lin
    Gui, Li-Jiang
    Jin, Shuo
    Zhang, Ying
    Lu, Guang-Hong
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (13)
  • [3] First-principles study of the stability and diffusion properties of hydrogen in zirconium carbide
    Yang, Xiao-Yong
    Lu, Yong
    Zhang, Ping
    JOURNAL OF NUCLEAR MATERIALS, 2016, 479 : 130 - 136
  • [4] Diffusion in thorium carbide: A first-principles study
    Perez Daroca, D.
    Llois, A. M.
    Mosca, H. O.
    JOURNAL OF NUCLEAR MATERIALS, 2015, 467 : 572 - 575
  • [5] Investigating behavior of hydrogen in zirconium by first-principles: From dissolution, diffusion to the interaction with vacancy
    Wang, Zi-Qi
    Li, Yu-Hao
    Li, Zhong-Zhu
    Zhou, Hong-Bo
    Lu, Guang-Hong
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2019, 458 : 1 - 6
  • [6] Dissolution and diffusion behaviors of hydrogen in copper: A first-principles investigation
    Zhou, Hong-Bo
    Zhang, Ying
    Ou, Xin
    COMPUTATIONAL MATERIALS SCIENCE, 2013, 79 : 923 - 928
  • [7] Hydrogen diffusion behavior in N doped ZnO: First-principles study
    Hu, J.
    He, H.Y.
    Pan, B.C.
    Journal of Applied Physics, 2008, 103 (11):
  • [8] First-principles study of phosphorus embrittlement in austenitic steels with κ-carbide precipitates
    Medvedeva, N. I.
    Van Aken, D. C.
    Medvedeva, J. E.
    COMPUTATIONAL MATERIALS SCIENCE, 2017, 138 : 105 - 110
  • [9] Hydrogen diffusion behavior in N doped ZnO: First-principles study
    Hu, J.
    He, H. Y.
    Pan, B. C.
    JOURNAL OF APPLIED PHYSICS, 2008, 103 (11)
  • [10] First principles study on strain effect of hydrogen diffusion and dissolution behavior in Ruthenium
    Wang, Minghui
    Ye, Zongbiao
    Yang, Fangling
    Chen, Yuqi
    Gao, Tao
    Wei, Jianjun
    Gou, Fujun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 50 : 85 - 93