A biorthogonal decomposition for the identification and simulation of non-stationary and non-Gaussian random fields

被引:4
|
作者
Zentner, I. [1 ]
Ferre, G. [2 ]
Poirion, F. [3 ]
Benoit, M. [4 ]
机构
[1] Univ Paris Saclay, UMR EDF ENSTA CNRS CEA 9219, IMSIA, 828 Blvd Marechaux, F-91762 Palaiseau, France
[2] Ecole Ponts ParisTech, CERMICS, 6 & 8 Ave Blaise Pascal, F-77455 Champs Sur Marne 2, Marne La Vallee, France
[3] Off Natl Etud & Rech Aerosp, Dept Struct Dynam & Aeroelast, BP72,29 Ave Div Leclerc, F-92322 Chatillon, France
[4] Aix Marseille Univ, Ecole Cent Marseille, CNRS, IRPHE,UMR 7342, 49 Rue Freder Joliot Curie,BP 146, F-13384 Marseille 13, France
关键词
Random fields; Non-Gaussian; Non-stationary; Bi-orthogonal decomposition; Simulation; Karhunen-Loeve; Earthquake; Sea state; KARHUNEN-LOEVE EXPANSION;
D O I
10.1016/j.jcp.2016.02.067
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, a new method for the identification and simulation of non-Gaussian and non-stationary stochastic fields given a database is proposed. It is based on two successive biorthogonal decompositions aiming at representing spatio-temporal stochastic fields. The proposed double expansion allows to build the model even in the case of large-size problems by separating the time, space and random parts of the field. A Gaussian kernel estimator is used to simulate the high dimensional set of random variables appearing in the decomposition. The capability of the method to reproduce the non-stationary and non-Gaussian features of random phenomena is illustrated by applications to earthquakes (seismic ground motion) and sea states (wave heights). (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [1] Simulation of multi-dimensional non-gaussian non-stationary random fields
    Sakamoto, S
    Ghanem, R
    [J]. PROBABILISTIC ENGINEERING MECHANICS, 2002, 17 (02) : 167 - 176
  • [2] A translation model for non-stationary, non-Gaussian random processes
    Ferrante, FJ
    Arwade, SR
    Graham-Brady, LL
    [J]. PROBABILISTIC ENGINEERING MECHANICS, 2005, 20 (03) : 215 - 228
  • [3] Adaptive identification of non-Gaussian/non-stationary glint noise
    Wu, WR
    Wu, KG
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1999, E82A (12) : 2783 - 2792
  • [4] Simulation of inhomogeneous, non-stationary and non-Gaussian turbulent winds
    Nielsen, M.
    Larsen, G. C.
    Hansen, K. S.
    [J]. SCIENCE OF MAKING TORQUE FROM WIND, 2007, 75
  • [5] NUMERICAL SIMULATION OF STATIONARY AND NON-STATIONARY GAUSSIAN RANDOM PROCESSES
    FRANKLIN, JN
    [J]. SIAM REVIEW, 1965, 7 (01) : 68 - &
  • [6] Estimation of evolutionary spectra for simulation of non-stationary and non-Gaussian stochastic processes
    Shields, M. D.
    Deodatis, G.
    [J]. COMPUTERS & STRUCTURES, 2013, 126 : 149 - 163
  • [7] Stochastic simulation of non-Gaussian/non-stationary properties in a functionally graded plate
    Ferrante, FJ
    Graham-Brady, LL
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (12-16) : 1675 - 1692
  • [8] Non-stationary and non-Gaussian characteristics of wind speeds
    Hui, Yi
    Li, Bo
    Kawai, Hiromasa
    Yang, Qingshan
    [J]. WIND AND STRUCTURES, 2017, 24 (01) : 59 - 78
  • [9] CONDITIONAL SIMULATION OF NON-GAUSSIAN RANDOM-FIELDS
    ELISHAKOFF, I
    REN, YJ
    SHINOZUKA, M
    [J]. ENGINEERING STRUCTURES, 1994, 16 (07) : 558 - 563
  • [10] Simulation of non-stationary non-Gaussian random fields from sparse measurements using Bayesian compressive sampling and Karhunen-Loeve expansion
    Montoya-Noguera, Silvana
    Zhao, Tengyuan
    Hu, Yue
    Wang, Yu
    Phoon, Kok-Kwang
    [J]. STRUCTURAL SAFETY, 2019, 79 : 66 - 79