An explicit bound for the least prime ideal in the Chebotarev density theorem

被引:20
|
作者
Thorner, Jesse [1 ]
Zaman, Asif [2 ]
机构
[1] Stanford Univ, Dept Math, Sloan Math Ctr, Bldg 380, Stanford, CA 94305 USA
[2] Univ Toronto, Dept Math, Room 6290,40 St George St, Toronto, ON M5S 2E4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Chebotarev density theorem; least prime ideal; Linnik's theorem; binary quadratic forms; elliptic curves; modular forms; log-free zero density estimate; ZERO-FREE REGIONS; RESIDUE;
D O I
10.2140/ant.2017.11.1135
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove an explicit version of Weiss' bound on the least norm of a prime ideal in the Chebotarev density theorem, which is a significant improvement on the work of Lagarias, Montgomery, and Odlyzko. As an application, we prove the first explicit, nontrivial, and unconditional upper bound for the least prime represented by a positive-definite primitive binary quadratic form. We also consider applications to elliptic curves and congruences for the Fourier coefficients of holomorphic cuspidal modular forms.
引用
收藏
页码:1135 / 1197
页数:63
相关论文
共 50 条