A fully automated method for quantitative cerebral hemodynamic analysis using DSC-MRI

被引:99
|
作者
Bjornerud, Atle [1 ,2 ]
Emblem, Kyrre E.
机构
[1] Oslo Univ Hosp, Dept Med Phys, Intervent Ctr, Rikshosp, N-0027 Oslo, Norway
[2] Univ Oslo, Dept Phys, Oslo, Norway
来源
关键词
tumor perfusion; CBF; CBV; perfusion analysis; DSC-MRI; cluster analysis; SUSCEPTIBILITY CONTRAST MRI; SINGULAR-VALUE DECOMPOSITION; ARTERIAL INPUT FUNCTION; BOLUS-TRACKING MRI; BLOOD-FLOW; PERFUSION MRI; ABSOLUTE QUANTIFICATION; NORMAL VOLUNTEERS; VOLUME; GLIOMAS;
D O I
10.1038/jcbfm.2010.4
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Dynamic susceptibility contrast (DSC)-based perfusion analysis from MR images has become an established method for analysis of cerebral blood volume (CBV) in glioma patients. To date, little emphasis has, however, been placed on quantitative perfusion analysis of these patients, mainly due to the associated increased technical complexity and lack of sufficient stability in a clinical setting. The aim of our study was to develop a fully automated analysis framework for quantitative DSC-based perfusion analysis. The method presented here generates quantitative hemodynamic maps without user interaction, combined with automatic segmentation of normal-appearing cerebral tissue. Validation of 101 patients with confirmed glioma after surgery gave mean values for CBF, CBV, and MTT, extracted automatically from normal-appearing whole-brain white and gray matter, in good agreement with literature values. The measured age-and gender-related variations in the same parameters were also in agreement with those in the literature. Several established analysis methods were compared and the resulting perfusion metrics depended significantly on method and parameter choice. In conclusion, we present an accurate, fast, and automatic quantitative perfusion analysis method where all analysis steps are based on raw DSC data only. Journal of Cerebral Blood Flow & Metabolism (2010) 30, 1066-1078; doi: 10.1038/jcbfm.2010.4; published online 20 January 2010
引用
收藏
页码:1066 / 1078
页数:13
相关论文
共 50 条
  • [1] The diagnostic value of quantitative analysis of ASL, DSC-MRI and DKI in the grading of cerebral gliomas: a meta-analysis
    Luan, Jixin
    Wu, Mingzhen
    Wang, Xiaohui
    Qiao, Lishan
    Guo, Guifang
    Zhang, Chuanchen
    [J]. RADIATION ONCOLOGY, 2020, 15 (01)
  • [2] The diagnostic value of quantitative analysis of ASL, DSC-MRI and DKI in the grading of cerebral gliomas: a meta-analysis
    Jixin Luan
    Mingzhen Wu
    Xiaohui Wang
    Lishan Qiao
    Guifang Guo
    Chuanchen Zhang
    [J]. Radiation Oncology, 15
  • [3] Toxoplasmosis versus lymphoma: Cerebral lesion characterization using DSC-MRI revisited
    Dibble, Elizabeth H.
    Boxerman, Jerrold L.
    Baird, Grayson L.
    Donahue, John E.
    Rogg, Jeffrey M.
    [J]. CLINICAL NEUROLOGY AND NEUROSURGERY, 2017, 152 : 84 - 89
  • [4] Quantitative Analysis of DCE and DSC-MRI: From Kinetic Modeling to Deep Learning
    Rotkopf, Lukas T.
    Zhang, Kevin Sun
    Tavakoli, Anoshirwan Andrej
    Bonekamp, David
    Ziener, Christian Herbert
    Schlemmer, Heinz-Peter
    [J]. ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2022, 194 (09): : 975 - 982
  • [5] DSC-MRI OF GLIOBLASTOMA: A LONGITUDINAL ASSESSMENT OF TUMOR PERFUSION WITH CEREBRAL BLOOD VOLUME
    Ken, S.
    Filleron, T.
    Deviers, A.
    Franceries, X.
    Lotterie, J. A.
    Lubrano, V.
    Berry, I.
    Celsis, P.
    Moyal, E. Cohen-Jonathan
    Laprie, A.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2012, 104 : 25 - 26
  • [6] Feasibility of Using a Short ASL Scan for Calibrating Cerebral Blood Flow Obtained From DSC-MRI
    Wang, P.
    Chang, T.
    Huang, K.
    Yeh, C.
    Chien, C.
    Wai, Y.
    Lee, T.
    Liu, H.
    [J]. MEDICAL PHYSICS, 2014, 41 (06)
  • [7] Reliable estimation of capillary transit time distributions using DSC-MRI
    Mouridsen, Kim
    Hansen, Mikkel Bo
    Ostergaard, Leif
    Jespersen, Sune Norhoj
    [J]. JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2014, 34 (09): : 1511 - 1521
  • [8] Time-Efficient Perfusion Imaging Using DCE- and DSC-MRI
    Macicek, Ondrej
    Jirik, Radovan
    Mikulka, Jan
    Bartons, Michal
    Sprlakova-Pukova, Andrea
    Kerkovsky, Milos
    Starcuk, Zenon, Jr.
    Bartusek, Karel
    Taxt, Torfinn
    [J]. MEASUREMENT SCIENCE REVIEW, 2018, 18 (06): : 262 - 271
  • [9] Perfusion-weighted software written in Python']Python for DSC-MRI analysis
    Fernandez-Rodicio, Sabela
    Ferro-Costas, Gonzalo
    Sampedro-Viana, Ana
    Bazarra-Barreiros, Marcos
    Ferreiros, Alba
    Lopez-Arias, Esteban
    Perez-Mato, Maria
    Ouro, Alberto
    Pumar, Jose M.
    Mosqueira, Antonio J.
    Alonso-Alonso, Maria Luz
    Castillo, Jose
    Hervella, Pablo
    Iglesias-Rey, Ramon
    [J]. FRONTIERS IN NEUROINFORMATICS, 2023, 17
  • [10] Robustness of Quantitative Compressive Sensing MRI: The Effect of Random Undersampling Patterns on Derived Parameters for DCE- and DSC-MRI
    Smith, David. S.
    Li, Xia
    Gambrell, James V.
    Arlinghaus, Lori R.
    Quarles, C. Chad
    Yankeelov, Thomas E.
    Welch, E. Brian
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (02) : 504 - 511