Picroilmenites in Yakutian kimberlites: variations and genetic models

被引:16
|
作者
Ashchepkov, I. V. [1 ]
Alymova, N. V. [2 ]
Logvinova, A. M. [1 ]
Vladykin, N. V. [2 ]
Kuligin, S. S. [1 ]
Mityukhin, S. I. [3 ]
Downes, H. [4 ]
Stegnitsky, Yu. B. [3 ]
Prokopiev, S. A. [3 ]
Salikhov, R. F. [3 ]
Palessky, V. S. [1 ]
Khmel'nikova, O. S. [1 ]
机构
[1] RAS, Sobolevs Inst Geol & Mineral, SD, Novosibirsk, Russia
[2] RAS, Vinogradovs Inst Geochem, SD, Irkutsk, Russia
[3] ALROSA Open Joint Stock Co, Mirny, Russia
[4] Univ London, Birkbeck Coll, Dept Earth & Planetary Sci, London, England
关键词
TRACE-ELEMENT GEOCHEMISTRY; SOUTH-AFRICA; HIGH-PRESSURE; LITHOSPHERIC MANTLE; ILMENITE MEGACRYSTS; SIBERIAN CRATON; MIR KIMBERLITE; SILICATE MELTS; JAGERSFONTEIN KIMBERLITE; UDACHNAYA KIMBERLITE;
D O I
10.5194/se-5-915-2014
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Major and trace element variations in picroilmenites from Late Devonian kimberlite pipes in Siberia reveal similarities within the region in general, but show individual features for ilmenites from different fields and pipes. Empirical ilmenite thermobarometry (Ashchepkov et al., 2010), as well as common methods of mantle thermobarometry and trace element geochemical modeling, shows long compositional trends for the ilmenites. These are a result of complex processes of polybaric fractionation of protokimberlite melts, accompanied by the interaction with mantle wall rocks and dissolution of previous wall rock and metasomatic associations. Evolution of the parental magmas for the picroilmenites was determined for the three distinct phases of kimberlite activity from Yubileynaya and nearby Aprelskaya pipes, showing heating and an increase of Fe# (Fe# = Fe / (Fe + Mg) a.u.) of mantle peridotite minerals from stage to stage and splitting of the magmatic system in the final stages. High-pressure (5.5-7.0 GPa) Cr-bearing Mg-rich ilmenites (group 1) reflect the conditions of high-temperature metasomatic rocks at the base of the mantle lithosphere. Trace element patterns are enriched to 0.1-10/relative to primitive mantle (PM) and have flattened, spoon-like or S-or W-shaped rare earth element (REE) patterns with Pb > 1. These result from melting and crystallization in melt-feeding channels in the base of the lithosphere, where high-temperature dunites, harzburgites and pyroxenites were formed. Cr-poor ilmenite megacrysts (group 2) trace the hightemperature path of protokimberlites developed as result of fractional crystallization and wall rock assimilation during the creation of the feeder systems prior to the main kimberlite eruption. Inflections in ilmenite compositional trends probably reflect the mantle layering and pulsing melt intrusion during melt migration within the channels. Group 2 ilmenites have inclined REE enriched patterns (10-100)/PM with La / Yb-n similar to 10-25, similar to those derived from kimberlites, with high-field-strength elements (HFSE) peaks (typical megacrysts). A series of similar patterns results from polybaric Assimilation+ fractional crystallization (AFC) crystallization of protokimberlite melts which also precipitated sulfides (Pb < 1) and mixed with partial melts from garnet peridotites. Relatively low-Ti ilmenites with high-Cr content (group 3) probably crystallized in the metasomatic front under the rising protokimberlite source and represent the product of crystallization of segregated partial melts from metasomatic rocks. Cr-rich ilmenites are typical of veins and veinlets in peridotites crystallized from highly contaminated magma intruded into wall rocks in different levels within the mantle columns. Ilmenites which have the highest trace element contents (1000/PM) have REE patterns similar to those of perovskites. Low Cr contents suggest relatively closed system fractionation which occurred from the base of the lithosphere up to the garnet-spinel transition, according to monomineral thermobarometry for Mir and Dachnaya pipes. Restricted trends were detected for ilmenites from Udachnaya and most other pipes from the Daldyn-Alakit fields and other regions (Nakyn, Upper Muna and Prianabarie), where ilmenite trends extend from the base of the lithosphere mainly up to 4.0 GPa. Interaction of the megacryst forming melts with the mantle lithosphere caused heating and HFSE metasomatism prior to kimberlite eruption.
引用
收藏
页码:915 / 938
页数:24
相关论文
共 50 条
  • [1] Variations in chemical and isotopic compositions of the Yakutian kimberlites and their causes
    Bogatikov, O.A.
    Kononova, V.A.
    Golubeva, Yu.Yu.
    Zinchuk, N.N.
    Ilupin, I.P.
    Rotman, A.Ya.
    Levskij, L.K.
    Ovchinnikova, G.V.
    Kondrashov, I.A.
    Geokhimiya, 2004, 42 (09): : 915 - 939
  • [2] Variations in chemical and isotopic compositions of the Yakutian kimberlites and their causes
    Bogatikov, OA
    Kononova, VA
    Golubeva, YY
    Zinchuk, NN
    Ilupin, IP
    Rotman, AY
    Levsky, LK
    Ovchinnikova, GV
    Kondrashov, IA
    GEOCHEMISTRY INTERNATIONAL, 2004, 42 (09) : 799 - 821
  • [3] Peculiarities of the composition of volatile components in picroilmenites from Yakutian kimberlites of various ages (by gas chromatography—mass spectrometry)
    A. A. Tomilenko
    T. A. Bul’bak
    L. N. Pokhilenko
    D. V. Kuzmin
    N. V. Sobolev
    Doklady Earth Sciences, 2016, 469 : 690 - 694
  • [4] Peculiarities of the composition of volatile components in picroilmenites from Yakutian kimberlites of various ages (by gas chromatography-mass spectrometry)
    Tomilenko, A. A.
    Bul'bak, T. A.
    Pokhilenko, L. N.
    Kuzmin, D. V.
    Sobolev, N. V.
    DOKLADY EARTH SCIENCES, 2016, 469 (01) : 690 - 694
  • [5] REACTION RIMS ON PICROILMENITES FROM KIMBERLITES
    KLOPOTOV, VI
    MALOV, YV
    OVSYANNIKOV, EA
    GEOKHIMIYA, 1984, (10): : 1466 - 1473
  • [6] A genetic relationship between magnesian ilmenite and kimberlites of the Yakutian diamond fields
    Kostrovitsky, S., I
    Yakovlev, D. A.
    Soltys, A.
    Ivanov, A. S.
    Matsyuk, S. S.
    Robles-Cruz, S. E.
    ORE GEOLOGY REVIEWS, 2020, 120
  • [7] A NEW VARIETY OF ECLOGITES IN YAKUTIAN KIMBERLITES
    GARANIN, VK
    KUDRIAVTSEVA, GP
    KHARKIV, AD
    CHISTIAKOVA, VF
    DOKLADY AKADEMII NAUK SSSR, 1982, 262 (06): : 1450 - 1455
  • [8] THE CRYSTALLIZATION TREND OF ILMENITE IN YAKUTIAN KIMBERLITES
    BARASHKOV, IP
    MARSHINTSEV, VK
    DOKLADY AKADEMII NAUK SSSR, 1984, 278 (05): : 1210 - 1213
  • [9] FERRIMAGNETIC MINERALS FROM YAKUTIAN KIMBERLITES
    ROZOVA, EV
    FRANTSESSON, EV
    PLESHAKOV, AP
    BOTOVA, MM
    FILIPPOVA, LP
    DOKLADY AKADEMII NAUK SSSR, 1980, 250 (01): : 187 - 192
  • [10] CHILLED PARTICLES FROM THE YAKUTIAN KIMBERLITES
    TATARINTSEV, VI
    TSYMBAL, SN
    GARANIN, VK
    KUDRIAVTSEVA, GP
    MARSHINTSEV, VK
    DOKLADY AKADEMII NAUK SSSR, 1983, 270 (05): : 1199 - 1203