Controlled nucleation of hydroxyapatite on alginate scaffolds for stem cell-based bone tissue engineering

被引:97
|
作者
Suarez-Gonzalez, Darilis [1 ]
Barnhart, Kara [2 ]
Saito, Eiji [3 ]
Vanderby, Ray, Jr. [1 ,2 ,4 ]
Hollister, Scott J. [3 ]
Murphy, William L. [1 ,2 ,5 ]
机构
[1] Univ Wisconsin, Mat Sci Program, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Biomed Engn, Madison, WI 53706 USA
[3] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA
[4] Univ Wisconsin, Dept Orthoped & Rehabil, Madison, WI 53706 USA
[5] Univ Wisconsin, Dept Pharmacol, Madison, WI 53706 USA
基金
美国国家卫生研究院;
关键词
tissue engineering; scaffold; biomineralization; COMPOSITE SCAFFOLDS; SURFACE-ROUGHNESS; IN-VITRO; PHOSPHATE; GROWTH; REGENERATION; APATITE; DEPOSITION; HYDROGELS; COATINGS;
D O I
10.1002/jbm.a.32833
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Current bone tissue engineering strategies aim to grow a tissue similar to native bone by combining cells and biologically active molecules with a scaffold material. In this study, a macroporous scaffold made from the seaweed-derived polymer alginate was synthesized and mineralized for cell-based bone tissue engineering applications. Nucleation of a bone-like hydroxyapatite mineral was achieved by incubating the scaffold in modified simulated body fluids (mSBF) for 4 weeks. Analysis using scanning electron microscopy and energy dispersive x-ray analysis indicated growth of a continuous layer of mineral primarily composed of calcium and phosphorous. X-ray diffraction analysis showed peaks associated with hydroxyapatite, the major inorganic constituent of human bone tissue. In addition to the mineral characterization, the ability to control nucleation on the surface, into the bulk of the material, or on the inner pore surfaces of scaffolds was demonstrated. Finally, human MSCs attached and proliferated on the mineralized scaffolds and cell attachment improved when seeding cells on mineral coated alginate scaffolds. This novel alginate- HAP composite material could be used in bone tissue engineering as a scaffold material to deliver cells, and perhaps also biologically active molecules. (C) 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 95A: 222-234, 2010.
引用
收藏
页码:222 / 234
页数:13
相关论文
共 50 条
  • [1] Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell-based bone tissue engineering
    Ambre, Avinash H.
    Katti, Dinesh R.
    Katti, Kalpana S.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2015, 103 (06) : 2077 - 2101
  • [2] Alginate based scaffolds for bone tissue engineering
    Valente, J. F. A.
    Valente, T. A. M.
    Alves, P.
    Ferreira, P.
    Silva, A.
    Correia, I. J.
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2012, 32 (08): : 2596 - 2603
  • [3] Biomimetic scaffolds and natural matrices for stem cell-based tissue engineering and modeling
    Tuan, Rocky
    FASEB JOURNAL, 2014, 28 (01):
  • [4] Cell-based bone tissue engineering
    Meijer, Gert J.
    de Bruijn, Joost D.
    Koole, Ron
    van Blitterswijk, Clemens A.
    PLOS MEDICINE, 2007, 4 (02): : 260 - 264
  • [5] HYDROXYAPATITE SCAFFOLDS FOR BONE TISSUE ENGINEERING WITH CONTROLLED POROSITY AND MECHANICAL STRENGTH
    Sglavo, Vincenzo M.
    Piccinini, Marzio
    Madinelli, Andrea
    Bucciotti, Francesco
    ADVANCES IN BIOCERAMICS AND POROUS CERAMICS IV, 2011, 32 : 95 - 99
  • [6] Electrospun scaffolds composing of alginate, chitosan, collagen and hydroxyapatite for applying in bone tissue engineering
    Yu, Chia-Cherng
    Chang, Jung-Jhih
    Lee, Yen-Hsien
    Lin, Yu-Cheng
    Wu, Meng-Hsiu
    Yang, Ming-Chien
    Chien, Chiang-Ting
    MATERIALS LETTERS, 2013, 93 : 133 - 136
  • [7] Effect of cellulose nanocrystals on scaffolds comprising chitosan, alginate and hydroxyapatite for bone tissue engineering
    Shaheen, Th, I
    Montaser, A. S.
    Li, Suming
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2019, 121 : 814 - 821
  • [8] Mesenchymal stem cell-based bone tissue engineering for veterinary practice
    Nantavisai, Sirirat
    Egusa, Hiroshi
    Osathanon, Thanaphum
    Sawangmake, Chenphop
    HELIYON, 2019, 5 (11)
  • [9] NIR fluorescence monitoring for stem cell-based bone tissue engineering
    Lee, Sang Jin
    Kim, Soon Hee
    Choi, Hak Soo
    Kim, Moon Suk
    TISSUE ENGINEERING PART A, 2022, 28 : 87 - 87
  • [10] Hydroxyapatite/Polyurethane Scaffolds for Bone Tissue Engineering
    Zhang, Tianyu
    Li, Jingxuan
    Wang, Yahui
    Han, Weimo
    Wei, Yan
    Hu, Yinchun
    Liang, Ziwei
    Lian, Xiaojie
    Huang, Di
    TISSUE ENGINEERING PART B-REVIEWS, 2024, 30 (01) : 60 - 73