A Probabilistic Semantics for Abstract Argumentation

被引:106
|
作者
Thimm, Matthias [1 ]
机构
[1] Univ Koblenz Landau, Inst Web Sci & Technol, Landau, Germany
关键词
LOGIC;
D O I
10.3233/978-1-61499-098-7-750
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Classical semantics for abstract argumentation frameworks are usually defined in terms of extensions or, more recently, labelings. That is, an argument is either regarded as accepted with respect to a labeling or not. In order to reason with a specific semantics one takes either a credulous or skeptical approach, i.e. an argument is ultimately accepted, if it is accepted in one or all labelings, respectively. In this paper, we propose a more general approach for a semantics that allows for a more fine-grained differentiation between those two extreme views on reasoning. In particular, we propose a probabilistic semantics for abstract argumentation that assigns probabilities or degrees of belief to individual arguments. We show that our semantics generalizes the classical notions of semantics and we point out interesting relationships between concepts from argumentation and probabilistic reasoning. We illustrate the usefulness of our semantics on an example from the medical domain.
引用
收藏
页码:750 / 755
页数:6
相关论文
共 50 条
  • [1] On the semantics of abstract argumentation
    Kakas, A. C.
    Mancarella, P.
    JOURNAL OF LOGIC AND COMPUTATION, 2013, 23 (05) : 991 - 1015
  • [2] DECOMPOSING SEMANTICS IN ABSTRACT ARGUMENTATION
    Baroni, Pietro
    Cerutti, Federico
    Giacomin, Massimiliano
    JOURNAL OF APPLIED LOGICS-IFCOLOG JOURNAL OF LOGICS AND THEIR APPLICATIONS, 2023, 10 (03):
  • [3] Serialisable Semantics for Abstract Argumentation
    Bengel, Lars
    Thimm, Matthias
    COMPUTATIONAL MODELS OF ARGUMENT, COMMA 2022, 2022, 353 : 80 - 91
  • [4] Decomposing Semantics in Abstract Argumentation
    Baroni, Pietro
    Cerutti, Federico
    Giacomin, Massimiliano
    Journal of Applied Logics, 2023, 10 (03): : 341 - 392
  • [5] Explanation Semantics for Abstract Argumentation
    Liao, Beishui
    Van der Torre, Leendert
    COMPUTATIONAL MODELS OF ARGUMENT (COMMA 2020), 2020, 326 : 271 - 282
  • [6] Deep Learning for Abstract Argumentation Semantics
    Craandijk, Dennis
    Bex, Floris
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 1667 - 1673
  • [7] Paraconsistent Labeling Semantics for Abstract Argumentation
    Lin, Yuanlei
    MATHEMATICS, 2024, 12 (05)
  • [8] Relational Acceptability Semantics of Abstract Argumentation
    Arisaka, Ryuta (ryutaarisaka@gmail.com), 1600, Springer Science and Business Media Deutschland GmbH (14325 LNAI):
  • [9] Interpretability of Gradual Semantics in Abstract Argumentation
    Delobelle, Jerome
    Villata, Serena
    SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, ECSQARU 2019, 2019, 11726 : 27 - 38
  • [10] Abstract interpretation of probabilistic semantics
    Monniaux, D
    STATIC ANALYSIS, 2000, 1824 : 322 - 339