Coincidence theorems for involutions

被引:3
|
作者
Aarts, JM
Fokkink, RJ
Vermeer, H
机构
[1] Tech Univ Delft, Fac Math & Informats, NL-2600 GA Delft, Netherlands
[2] Delft Hydraul, Dept Reg Water Management, NL-2600 MH Delft, Netherlands
关键词
coloring of involutions; antipodal coincidence;
D O I
10.1016/S0166-8641(97)00136-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Scepin (1974) and Izydorek and Jaworowski (1995, 1996) showed that for each k and n such that 2k > n there exists a contractible k-dimensional simplicial complex Y and a continuous map phi:S-n --> Y without the antipodal coincidence property, i.e., phi(x) not equal phi(-x) for all x is an element of S-n. On the other hand, if 2k less than or equal to n then every map phi:S-n --> Y to a k-dimensional simplicial complex has an antipodal coincidence point. In this paper it is shown that, with some minor modifications, these results remain valid when S-n and the antipodal map are replaced by any normal space and an involution with color number n + 2. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:3 / 8
页数:6
相关论文
共 50 条