Robust filtering and propagation of uncertainty in hidden Markov models

被引:1
|
作者
Allan, Andrew L. [1 ]
机构
[1] Swiss Fed Inst Technol, Zurich, Switzerland
来源
基金
瑞士国家科学基金会;
关键词
hidden Markov model; filtering; parameter uncertainty; rough paths; pathwise optimal control; DIFFERENTIAL-EQUATIONS DRIVEN; STOCHASTIC-CONTROL; ROUGH; STABILITY; SYSTEMS;
D O I
10.1214/21-EJP633
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the filtering of continuous-time finite-state hidden Markov models, where the rate and observation matrices depend on unknown time-dependent parameters, for which no prior or stochastic model is available. We quantify and analyze how the induced uncertainty may be propagated through time as we collect new observations, and used to simultaneously provide robust estimates of the hidden signal and to learn the unknown parameters, via techniques based on pathwise filtering and new results on the optimal control of rough differential equations.
引用
下载
收藏
页数:37
相关论文
共 50 条