Estimation of large covariance matrices of longitudinal data with basis function approximations

被引:27
|
作者
Huang, Jianhua Z. [1 ]
Liu, Linxu
Liu, Naiping
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
[2] Wachovia Treasure, Charlotte, NC 28202 USA
基金
美国国家科学基金会;
关键词
basis expansion; BIC; Cholesky decomposition; covariance estimation; longitudinal study; regression spline;
D O I
10.1198/106186007X181452
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The major difficulties in estimating a large covariance matrix are the high dimensionality and the positive definiteness constraint. To overcome these difficulties, we propose to apply smoothing-based regularization and use the modified Cholesky decomposition of the covariance matrix. In our proposal, the covariance matrix is diagonalized by a lower triangular matrix, whose subdiagonals are treated as smooth functions. These functions are approximated by splines and estimated by maximizing the normal likelihood. In our framework, the mean and the covariance of the longitudinal data can be modeled simultaneously and missing data can be handled in a natural way using the EM algorithm. We illustrate the proposed method via simulation and applying it to two real data examples, which involve estimation of 11 x 11 and 102 x 102 covariance matrices.
引用
收藏
页码:189 / 209
页数:21
相关论文
共 50 条
  • [1] Joint estimation of mean-covariance model for longitudinal data with basis function approximations
    Mao, Jie
    Zhu, Zhongyi
    Fung, Wing K.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (02) : 983 - 992
  • [2] Nonparametric estimation of large covariance matrices of longitudinal data
    Wu, WB
    Pourahmadi, M
    BIOMETRIKA, 2003, 90 (04) : 831 - 844
  • [3] Analysis of longitudinal data with semiparametric estimation of covariance function
    Fan, Jianqing
    Huang, Tao
    Li, Runze
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (478) : 632 - 641
  • [4] Eigenvalue Estimation of Parameterized Covariance Matrices of Large Dimensional Data
    Yao, Jianfeng
    Kammoun, Abla
    Najim, Jamal
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (11) : 5893 - 5905
  • [5] Efficient Covariance Approximations for Large Sparse Precision Matrices
    Siden, Per
    Lindgren, Finn
    Bolin, David
    Villani, Mattias
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (04) : 898 - 909
  • [6] Regularized estimation of large covariance matrices
    Bickel, Peter J.
    Levina, Elizaveta
    ANNALS OF STATISTICS, 2008, 36 (01): : 199 - 227
  • [7] An overview of the estimation of large covariance and precision matrices
    Fan, Jianqing
    Liao, Yuan
    Liu, Han
    ECONOMETRICS JOURNAL, 2016, 19 (01): : C1 - C32
  • [8] Limitations on low rank approximations for covariance matrices of spatial data
    Stein, Michael L.
    SPATIAL STATISTICS, 2014, 8 : 1 - 19
  • [9] Nonlinear shrinkage estimation of large integrated covariance matrices
    Lam, Clifford
    Feng, Phoenix
    Hu, Charlie
    BIOMETRIKA, 2017, 104 (02) : 481 - 488
  • [10] Estimation of Large Dynamic Covariance Matrices: A Selective Review
    Li, Degui
    ECONOMETRICS AND STATISTICS, 2024, 29 : 16 - 30