Improved bounds on the Ramsey number of fans

被引:4
|
作者
Chen, Guantao [1 ]
Yu, Xiaowei [2 ]
Zhao, Yi [1 ]
机构
[1] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
[2] Jiangsu Normal Univ, Dept Math & Stat, Xuzhou 221116, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
D O I
10.1016/j.ejc.2021.103347
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a given graph H, the Ramsey number r(H) is the minimum N such that any 2-edge-coloring of the complete graph K-N yields a monochromatic copy of H. Given a positive integer n, a fanF(n) is a graph formed by n triangles that share one common vertex. We show that 9n/2-5 <= r(F-n) < 11n/2+6 for any n. This improves previous best bounds r(F-n) <= 6n of Lin and Li and r(F-n) >= 4n+2 of Zhang, Broersma and Chen. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Improved Bounds for the Ramsey Number of Tight Cycles Versus Cliques
    Mubayi, Dhruv
    COMBINATORICS PROBABILITY & COMPUTING, 2016, 25 (05): : 791 - 796
  • [2] A new upper bound for the Ramsey number of fans
    Dvorak, Vojtech
    Metrebian, Harry
    EUROPEAN JOURNAL OF COMBINATORICS, 2023, 110
  • [3] New bounds for the distance Ramsey number
    Kupavskii, Andrey B.
    Raigorodskii, Andrei M.
    Titova, Maria V.
    DISCRETE MATHEMATICS, 2013, 313 (22) : 2566 - 2574
  • [4] Lower Bounds of Size Ramsey Number for Graphs with Small Independence Number
    Chun-lin You
    Acta Mathematicae Applicatae Sinica, English Series, 2021, 37 : 841 - 846
  • [5] Lower Bounds of Size Ramsey Number for Graphs with Small Independence Number
    Chun-lin YOU
    Acta Mathematicae Applicatae Sinica, 2021, 37 (04) : 841 - 846
  • [6] Lower Bounds of Size Ramsey Number for Graphs with Small Independence Number
    You, Chun-lin
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2021, 37 (04): : 841 - 846
  • [7] Tighter Bounds on Directed Ramsey Number R(7)
    Neiman, David
    Mackey, John
    Heule, Marijn
    GRAPHS AND COMBINATORICS, 2022, 38 (05)
  • [8] Tighter Bounds on Directed Ramsey Number R(7)
    David Neiman
    John Mackey
    Marijn Heule
    Graphs and Combinatorics, 2022, 38
  • [9] New bounds on the Ramsey number r(Im, Ln)
    Ihringer, Ferdinand
    Rajendraprasad, Deepak
    Weinert, Thilo
    DISCRETE MATHEMATICS, 2021, 344 (03)
  • [10] On Ramsey numbers of fans
    Lin, Qizhong
    Li, Yusheng
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (01) : 191 - 194