Vitrification and levitation of a liquid droplet on liquid nitrogen

被引:124
|
作者
Song, Young S. [1 ]
Adler, Douglas [1 ]
Xu, Feng [1 ]
Kayaalp, Emre [2 ]
Nureddin, Aida [3 ]
Anchan, Raymond M. [3 ]
Maas, Richard L. [4 ]
Demirci, Utkan [1 ,5 ]
机构
[1] Harvard Univ, Bioacoust Microelectromech Syst Med Lab, Ctr Bioengn, Brigham & Womens Hosp,Dept Med,Sch Med, Boston, MA 02115 USA
[2] Yeditepe Univ, Fac Med, TR-34755 Istanbul, Turkey
[3] Harvard Univ, Sch Med, Brigham & Womens Hosp, Ctr Infertil & Reprod Surg, Boston, MA 02115 USA
[4] Harvard Univ, Sch Med, Brigham & Womens Hosp, Div Genet,Dept Med, Boston, MA 02115 USA
[5] Harvard Massachusetts Inst Technol Hlth Sci & Tec, Cambridge, MA 02139 USA
基金
美国国家卫生研究院;
关键词
cryopreservation; leidenfrost; film boiling; phase change; crystallization; THEORETICAL PREDICTION; HEAT-TRANSFER; FILM; TENDENCIES; SIMULATION; SPHERES; MODEL;
D O I
10.1073/pnas.0914059107
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The vitrification of a liquid occurs when ice crystal formation is prevented in the cryogenic environment through ultrarapid cooling. In general, vitrification entails a large temperature difference between the liquid and its surrounding medium. In our droplet vitrification experiments, we observed that such vitrification events are accompanied by a Leidenfrost phenomenon, which impedes the heat transfer to cool the liquid, when the liquid droplet comes into direct contact with liquid nitrogen. This is distinct from the more generally observed Leidenfrost phenomenon that occurs when a liquid droplet is self-vaporized on a hot plate. In the case of rapid cooling, the phase transition from liquid to vitrified solid (i.e., vitrification) and the levitation of droplets on liquid nitrogen (i.e., Leidenfrost phenomenon) take place simultaneously. Here, we investigate these two simultaneous physical events by using a theoretical model containing three dimensionless parameters (i.e., Stefan, Biot, and Fourier numbers). We explain theoretically and observe experimentally a threshold droplet radius during the vitrification of a cryoprotectant droplet in the presence of the Leidenfrost effect.
引用
收藏
页码:4596 / 4600
页数:5
相关论文
共 50 条
  • [41] FREEZING METHOD BY LIQUID NITROGEN FOR MEASURING SPRAY DROPLET SIZES.
    Karasawa, Takao
    Kurabayashi, Toshio
    Kaeriyama, Haruyuki
    Nenryo Kyokaishi, 1983, 62 (679): : 901 - 912
  • [42] EVAPORATION OF A LIQUID DROPLET
    KAYSER, R
    BENNETT, HS
    JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION A-PHYSICS AND CHEMISTRY, 1977, 81 (2-3): : 257 - 266
  • [43] Nucleation in a liquid droplet
    Yang, Fuqian
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (18) : 9990 - 9997
  • [44] Liquid Droplet Microresonators
    Giorgini, Antonio
    Avino, Saverio
    Malara, Pietro
    De Natale, Paolo
    Gagliardi, Gianluca
    SENSORS, 2019, 19 (03)
  • [45] Effects of vitrification solution on survival of zygotic embryos of rubber (Hevea brasiliensis) in liquid nitrogen
    Sam, YY
    Hor, YL
    IUFRO SEED SYMPOSIUM 1998: RECALCITRANT SEEDS, PROCEEDINGS, 1999, : 146 - 152
  • [46] Investigation of nitrogen solubility in liquid Fe-V alloys with the use of levitation technique
    Hutny, A
    Siwka, J
    ARCHIVES OF METALLURGY, 2001, 46 (02): : 197 - 206
  • [47] High-speed imaging and CFD simulations of a deforming liquid metal droplet in an electromagnetic levitation experiment
    P. Chapelle
    A. Jardy
    D. Ablitzer
    Yu. M. Pomarin
    G. M. Grigorenko
    Journal of Materials Science, 2008, 43 : 3001 - 3008
  • [48] High-speed imaging and CFD simulations of a deforming liquid metal droplet in an electromagnetic levitation experiment
    Chapelle, P.
    Jardy, A.
    Ablitzer, D.
    Pomarin, Yu. M.
    Grigorenko, G. M.
    JOURNAL OF MATERIALS SCIENCE, 2008, 43 (09) : 3001 - 3008
  • [49] THERMODYNAMIC CRITERION OF OVERCOOLED LIQUID VITRIFICATION
    BULER, PI
    ZHURNAL FIZICHESKOI KHIMII, 1986, 60 (11): : 2841 - 2844
  • [50] MAGNETIC LEVITATION OF LARGE LIQUID VOLUME
    Bojarevics, V.
    Roy, A.
    Pericleous, K. A.
    MAGNETOHYDRODYNAMICS, 2010, 46 (04): : 339 - 351