Minimum Spanning Tree of Line Segments

被引:1
|
作者
Dey, Sanjana [1 ]
Jallu, Ramesh K. [1 ]
Nandy, Subhas C. [1 ]
机构
[1] Indian Stat Inst, Kolkata 700108, India
来源
关键词
Minimum spanning tree; k-MST; Approximation algorithm; NP-complete; GRAPHS; SET; MST;
D O I
10.1007/978-3-319-94776-1_44
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this article, we study a variant of the geometric minimum spanning tree (MST) problem. Given a set S of n disjoint line segments in IR2, we need to find a tree spanning one endpoint from each of the segments in S. Note that, we have 2(n) possible choices of such a set of endpoints, each being referred as an instance. Thus, our objective is to choose one among those instances such that the sum of the lengths of all the edges of the tree spanning the points of that instance is minimum. We show that finding such a spanning tree is NP-complete in general, and propose a O(log(2) n)-factor approximation algorithm for the same.
引用
收藏
页码:529 / 541
页数:13
相关论文
共 50 条
  • [1] Computing an almost minimum set of spanning line segments of a polyhedron
    Wang, JY
    Liu, DY
    Wang, WP
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2001, 11 (05) : 475 - 485
  • [2] MINIMUM SPANNING TREE
    ROSS, GJS
    [J]. THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1969, 18 (01): : 103 - &
  • [3] MINIMUM SPANNING TREE
    CAHIT, I
    CAHIT, R
    [J]. PROCEEDINGS OF THE INSTITUTION OF ELECTRICAL ENGINEERS-LONDON, 1975, 122 (05): : 496 - 496
  • [4] The spanning line segments of a polyhedron
    Wang, JY
    Liu, DY
    Chen, XM
    Woo, TC
    [J]. JOURNAL OF MECHANICAL DESIGN, 1996, 118 (01) : 40 - 44
  • [5] Minimum spanning tree with neighborhoods
    Yang, Yang
    Lin, Mingen
    Xu, Jinhui
    Xie, Yulai
    [J]. ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, PROCEEDINGS, 2007, 4508 : 306 - +
  • [6] Pruning a minimum spanning tree
    Sandoval, Leonidas, Jr.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (08) : 2678 - 2711
  • [7] NORMALIZATION OF THE MINIMUM SPANNING TREE
    MARCELPOIL, R
    [J]. ANALYTICAL CELLULAR PATHOLOGY, 1993, 5 (03): : 177 - 186
  • [8] Reoptimization of the minimum spanning tree
    Paschos, Stratos A.
    Paschos, Vangelis Th.
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2012, 4 (02): : 211 - 217
  • [9] The minimum spanning tree constraint
    Dooms, Gregoire
    Katriel, Irit
    [J]. PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING - CP 2006, 2006, 4204 : 152 - 166
  • [10] Contractors' minimum spanning tree
    Hartman, Irith Ben-Arroyo
    Newman, Ilan
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 74 : 33 - 45