Existence of positive solutions for nonlinear singular boundary value problem with p-Laplacian

被引:0
|
作者
Ji, Dehong [1 ,2 ]
Yang, Yitao [1 ]
Ge, Weigao [2 ]
机构
[1] Tianjin Univ Technol, Coll Sci, Tianjin 300384, Peoples R China
[2] Beijing Inst Technol, Dept Math, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Sturm-Liouville-like four-point singular boundary value problem; p-Laplacian; positive solutions; STURM-LIOUVILLE OPERATOR; EIGENVALUE PROBLEMS; DIFFERENTIAL-EQUATIONS; KIND;
D O I
10.1002/mma.1162
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of positive solutions for the following Sturm-Liouville-like four-point singular boundary value problem (BVP) with p-Laplacian (phi(p)(u'(t)))' + q(t)f(u(t)) = 0, t is an element of (0,1) u(0) - alpha u'(xi) = 0, u(1) + beta u'(eta) = 0 where phi(p)(s) = vertical bar s vertical bar(p-2) s, p > 1, f is a lower semi-continuous function. Using the fixed-point theorem of cone expansion and compression of norm type, the existence of positive solution and infinitely many positive solutions for Sturm-Liouville-like singular BVP with p-Laplacian are obtained. Copyright (C) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:188 / 197
页数:10
相关论文
共 50 条