Towards a Smart Electronics Production Using Machine Learning Techniques

被引:2
|
作者
Seidel, Reinhardt [1 ]
Mayr, Andreas [1 ]
Schaefer, Franziska [1 ]
Kisskalt, Dominik [1 ]
Franke, Joerg [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nuremberg FAU, Inst Factory Automat & Prod Syst FAPS, Nurnberg, Germany
关键词
STENCIL; OPTIMIZATION;
D O I
10.1109/isse.2019.8810176
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
High quality and low costs are main drivers in electronics production. Regardless of the application, the trend towards batch size 1 heavily challenges current production systems. With higher data availability, the application of machine learning (ML) has great potential for the future of electronics production. Therefore, this paper gives an overview about exemplary investigations of ML techniques in the assembly of surface mount devices (SMD) and shows the need for a systematic proceeding when searching for profitable ML use cases. In doing so, a process-oriented methodology for the identification of ML use cases is derived, paving the way towards a smart electronics production.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] A smart DDMRP model using machine learning techniques
    Aguilar, Jose
    Guillen, Ricardo Jose Dos Santos
    Garcia, Rodrigo
    Gomez, Carlos
    Jerez, M.
    Narvaez, Marvin Luis Jimenez
    Puerto, Eduard
    [J]. INTERNATIONAL JOURNAL OF VALUE CHAIN MANAGEMENT, 2023, 14 (02) : 107 - 142
  • [2] Towards Intelligent Power Electronics-Dominated Grid via Machine Learning Techniques
    Abu-Rub, Omar H.
    Fard, Amin Y.
    Umar, Muhammad Farooq
    Hosseinzadehtaher, Mohsen
    Shadmands, Mohammad B.
    [J]. IEEE POWER ELECTRONICS MAGAZINE, 2021, 8 (01): : 28 - 38
  • [3] Prognosis of forest production using machine learning techniques
    Silva, Jeferson Pereira Martins
    da Silva, Mayra Luiza Marques
    Mendonca, Adriano Ribeiro de
    da Silva, Gilson Fernandes
    de Barros Jr, Antonio Almeida
    da Silva, Evandro Ferreira
    Aguiar, Marcelo Otone
    Santos, Jeangelis Silva
    Rodrigues, Nivea Maria Mafra
    [J]. INFORMATION PROCESSING IN AGRICULTURE, 2023, 10 (01): : 71 - 84
  • [4] Smart Health Monitoring System using IOT and Machine Learning Techniques
    Pandey, Honey
    Prabha, S.
    [J]. 2020 SIXTH INTERNATIONAL CONFERENCE ON BIO SIGNALS, IMAGES, AND INSTRUMENTATION (ICBSII), 2020,
  • [5] Fraud Prediction in Smart Supply Chains Using Machine Learning Techniques
    Constante-Nicolalde, Fabian-Vinicio
    Guerra-Teran, Paulo
    Perez-Medina, Jorge-Luis
    [J]. APPLIED TECHNOLOGIES (ICAT 2019), PT II, 2020, 1194 : 145 - 159
  • [6] Detection of Sources of Instability in Smart Grids Using Machine Learning Techniques
    Moldovan, Dorin
    Salomie, Ioan
    [J]. 2019 IEEE 15TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP 2019), 2019, : 175 - 182
  • [7] Special Issue on Machine Learning Techniques in Power Electronics
    Rathore, Akshay Kumar
    Doolla, Suryanarayana
    Monti, Antonello
    [J]. IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, 2023, 11 (06) : 5526 - 5528
  • [8] Review on smart grid load forecasting for smart energy management using machine learning and deep learning techniques
    Biswal, Biswajit
    Deb, Subhasish
    Datta, Subir
    Ustun, Taha Selim
    Cali, Umit
    [J]. Energy Reports, 2024, 12 : 3654 - 3670
  • [9] Triboelectric Nanogenerator Based Smart Electronics via Machine Learning
    Ji, Xianglin
    Zhao, Tingkai
    Zhao, Xin
    Lu, Xufei
    Li, Tiehu
    [J]. ADVANCED MATERIALS TECHNOLOGIES, 2020, 5 (02)
  • [10] Towards Personal Data Identification and Anonymization Using Machine Learning Techniques
    Di Cerbo, Francesco
    Trabelsi, Slim
    [J]. NEW TRENDS IN DATABASES AND INFORMATION SYSTEMS, ADBIS 2018, 2018, 909 : 118 - 126