Breast-lesion Segmentation Combining B-Mode and Elastography Ultrasound

被引:17
|
作者
Pons, Gerard [1 ]
Marti, Joan [1 ]
Marti, Robert [1 ]
Ganau, Sergi [2 ]
Noble, J. Alison [3 ]
机构
[1] Univ Girona, Dept Comp Architecture & Technol, Campus Montilivi,Bldg P4, E-17071 Girona, Spain
[2] Corp Parc Tauli, Dept Radiol, UDIAT Ctr Diagnost, Sabadell, Spain
[3] Univ Oxford, Dept Engn Sci, Inst Biomed Engn, Old Rd Campus Res Bldg, Oxford, England
关键词
breast cancer; lesion segmentation; elastography; strain; Markov Random Fields; ultrasound; IMAGES; DIAGNOSIS; DISPLACEMENT; MAMMOGRAPHY; ELASTICITY;
D O I
10.1177/0161734615589287
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Breast ultrasound (BUS) imaging has become a crucial modality, especially for providing a complementary view when other modalities (i.e., mammography) are not conclusive in the task of assessing lesions. The specificity in cancer detection using BUS imaging is low. These false-positive findings often lead to an increase of unnecessary biopsies. In addition, increasing sensitivity is also challenging given that the presence of artifacts in the B-mode ultrasound (US) images can interfere with lesion detection. To deal with these problems and improve diagnosis accuracy, ultrasound elastography was introduced. This paper validates a novel lesion segmentation framework that takes intensity (B-mode) and strain information into account using a Markov Random Field (MRF) and a Maximum a Posteriori (MAP) approach, by applying it to clinical data. A total of 33 images from two different hospitals are used, composed of 14 cancerous and 19 benign lesions. Results show that combining both the B-mode and strain data in a unique framework improves segmentation results for cancerous lesions (Dice Similarity Coefficient of 0.49 using B-mode, while including strain data reaches 0.70), which are difficult images where the lesions appear with blurred and not well-defined boundaries.
引用
收藏
页码:209 / 224
页数:16
相关论文
共 50 条
  • [31] Advancements in Deep Learning for B-Mode Ultrasound Segmentation: A Comprehensive Review
    Ansari, Mohammed Yusuf
    Mangalote, Iffa Afsa Changaai
    Meher, Pramod Kumar
    Aboumarzouk, Omar
    Al-Ansari, Abdulla
    Halabi, Osama
    Dakua, Sarada Prasad
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (03): : 2126 - 2149
  • [32] Automatic segmentation of the lumen of the carotid artery in ultrasound B-mode images
    Santos, Andre M. F.
    Tavares, Joao Manuel R. S.
    Sousa, Luisa
    Santos, Rosa
    Castro, Pedro
    Azevedo, Elsa
    MEDICAL IMAGING 2013: COMPUTER-AIDED DIAGNOSIS, 2013, 8670
  • [33] Segmentation of B-mode cardiac ultrasound data by Bayesian Probability Maps
    Hansson, Mattias
    Brandt, Sami S.
    Lindstrom, Johan
    Gudmundsson, Petri
    Jujic, Amra
    Malmgren, Andreas
    Cheng, Yuanji
    MEDICAL IMAGE ANALYSIS, 2014, 18 (07) : 1184 - 1199
  • [34] Current Trends in Segmentation of Medical Ultrasound B-mode Images: A Review
    Shrimali, Vibhakar
    Anand, R. S.
    Kumar, Vinod
    IETE TECHNICAL REVIEW, 2009, 26 (01) : 8 - 17
  • [35] Analyzing the Performance of Ultrasonic B-mode Imaging for Breast Lesion Diagnosis
    Bahramian, Sara
    Abbey, Craig K.
    Insana, Michael F.
    MEDICAL IMAGING 2014: PHYSICS OF MEDICAL IMAGING, 2014, 9033
  • [36] Advantages of b-mode ultrasound combined with strain elastography in differentiation of idiopathic granulomatous mastitis from malignant breast lesions
    Arslan, Serdar
    Oncu, Fatih
    Eryilmaz, Mehmet Ali
    Durmaz, Mehmet Sedat
    Altunkeser, Aysegul
    Unlu, Yasar
    TURKISH JOURNAL OF MEDICAL SCIENCES, 2018, 48 (01) : 16 - 23
  • [37] COMPARING PERFORMANCE OF COMBINATIONS OF SHEAR WAVE ELASTOGRAPHY AND B-MODE ULTRASOUND IN DIAGNOSING BREAST MASSES: IS IT INFLUENCED BY MASS SIZE?
    Cong, Rui
    Li, Jing
    Wang, Xuejiao
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2017, 43 (10): : 2133 - 2143
  • [38] ELASTOGRAPHY VS B-MODE LUNG ULTRASOUND FOR DETECTION OF PNEUMOTHORAX: AN OBSERVATIONAL, PROSPECTIVE STUDY
    Bandelli, Gian Piero
    Bassi, Ilaria
    Zanforlin, Alessandro
    Inchingolo, Riccardo
    Cipolli, Alessandro
    de Grauw, Arianna Johanna
    Ferrari, Marco
    Galasso, Thomas
    Natali, Filippo
    Ferioli, Martina
    Buia, Francesco
    Attina, Domenico
    Niro, Fabio
    Ingraldi, Luciana
    Nardi, Elena
    Lovato, Luigi
    Candoli, Piero
    CHEST, 2024, 166 (04) : 4032A - 4033A
  • [39] Radiomics Models for B-mode Breast Ultrasound and Strain Elastography to improve Breast Cancer Diagnosis (INSPiRED 005): An International, Multicenter Analysis
    Pfob, Andre
    He, Tanja
    Cai, Lie
    Barr, Richard G.
    Duda, Volker
    Alwafai, Zaher
    Balleyguier, Corinne
    Clevert, Dirk-Andre
    Fastner, Sarah
    Gomez, Christina
    Goncalo, Manuela
    Gruber, Ines
    Hahn, Markus
    Hennigs, Andre
    Kapetas, Panagiotis
    Lu, Sheng-Chieh
    Nees, Juliane
    Ohlinger, Ralf
    Riedel, Fabian
    Rutten, Matthieu
    Schaefgen, Benedikt
    Stieber, Anne
    Togawa, Riku
    Tozaki, Mitsuhiro
    Wojcinski, Sebastian
    Xu, Cai
    Rauch, Geraldine
    Heil, Jorg
    Sidey-Gibbons, Chris
    Golatta, Michael
    CANCER RESEARCH, 2024, 84 (09)
  • [40] Accuracy of B-mode ultrasound and ARFI elastography in predicting malignancy of canine splenic lesions
    Maronezi, Marjury Cristina
    Carneiro, Rafael Kretzer
    da Cruz, Igor Cezar Kniphoff
    de Oliveira, Ana Paula Luiz
    De Nardi, Andrigo Barboza
    Pavan, Leticia
    Del'Aguila-Silva, Priscila
    Uscategui, Ricardo Andres Ramirez
    Feliciano, Marcus Antonio Rossi
    SCIENTIFIC REPORTS, 2022, 12 (01)