oscillating water column;
wave energy converter;
machine-learning;
pressure prediction model;
big data platform;
HPC cloud;
D O I:
10.3390/en14112982
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
Wave power is an eco-friendly power generation method. Owing to the highly volatile nature of wave energy, the application of prediction techniques for power generation, failure diagnosis, and operational efficiency plays a key role in the successful operation of wave power plants (WPPs). To this end, we propose the following approaches: (i) deriving the correlation between highly volatile data such as wave height data and sensor data in an oscillating water column (OWC) chamber; (ii) development of an optimal training model capable of accurate prediction of the state of the wave energy converter (WEC) based on the collected sensor data. In this study, we developed a big data analysis system that can utilize the machine learning framework in KNIME (an open analysis platform), and to enable smart operation, we designed a training model using a digital twin of an OWC-WEC that is currently in operation. Using various machine learning models, the pressure of the OWC chamber was predicted, and the results obtained were tested and evaluated to confirm its validity. Furthermore, the prediction performance was comparatively analyzed, demonstrating the excellent performance of the proposed CNN-LSTM-based prediction model.
机构:
Univ Fed Rio Grande, Engn Sch, Av Italia,Km 8,Campus Carreiros, BR-96201900 Rio Grande, RS, BrazilUniv Fed Rio Grande, Engn Sch, Av Italia,Km 8,Campus Carreiros, BR-96201900 Rio Grande, RS, Brazil
Goncalves, Rafael A. A. C.
Teixeira, Paulo R. F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande, Engn Sch, Av Italia,Km 8,Campus Carreiros, BR-96201900 Rio Grande, RS, BrazilUniv Fed Rio Grande, Engn Sch, Av Italia,Km 8,Campus Carreiros, BR-96201900 Rio Grande, RS, Brazil
Teixeira, Paulo R. F.
Didier, Eric
论文数: 0引用数: 0
h-index: 0
机构:
Hydraul & Environm Dept, Lab Nacl Engn Civil, Av Brasil 101, P-1700066 Lisbon, PortugalUniv Fed Rio Grande, Engn Sch, Av Italia,Km 8,Campus Carreiros, BR-96201900 Rio Grande, RS, Brazil
Didier, Eric
Torres, Fernando R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande, Engn Sch, Av Italia,Km 8,Campus Carreiros, BR-96201900 Rio Grande, RS, BrazilUniv Fed Rio Grande, Engn Sch, Av Italia,Km 8,Campus Carreiros, BR-96201900 Rio Grande, RS, Brazil
机构:
Res Inst Ships & Ocean Engn KRISO, 1312-32 Yuseong Daero, Daejeon 34103, South KoreaRes Inst Ships & Ocean Engn KRISO, 1312-32 Yuseong Daero, Daejeon 34103, South Korea
Roh, Chan
Kim, Kyong-Hwan
论文数: 0引用数: 0
h-index: 0
机构:
Res Inst Ships & Ocean Engn KRISO, 1312-32 Yuseong Daero, Daejeon 34103, South KoreaRes Inst Ships & Ocean Engn KRISO, 1312-32 Yuseong Daero, Daejeon 34103, South Korea