Adversarial Attacks in a Deep Reinforcement Learning based Cluster Scheduler

被引:99
|
作者
Zhang, Shaojun [1 ]
Wang, Chen [2 ]
Zomaya, Albert Y. [1 ]
机构
[1] Univ Sydney, Sch Comp Sci, Sydney, NSW, Australia
[2] CSIRO Data61, Sydney, NSW, Australia
关键词
scheduling; deep reinforcement learning; robustness; adversarial attack; directed acyclic graph;
D O I
10.1109/mascots50786.2020.9285955
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A scheduler is essential for resource management in a shared computer cluster, particularly scheduling algorithms play an important role in meeting service level objectives of user applications in large scale clusters that underlie cloud computing. Traditional cluster schedulers are often based on empirical observations of patterns of jobs running on them. It is unclear how effective they are for capturing the patterns of a variety of jobs in clouds. Recent advances in Deep Reinforcement Learning (DRL) promise a new optimization framework for a scheduler to systematically address the problem. A DRL-based scheduler can extract detailed patterns from job features and the dynamics of cloud resource utilization for better scheduling decisions. However, the deep neural network models used by the scheduler might be vulnerable to adversarial attacks. There is limited research investigating the vulnerability in DRL-based schedulers. In this paper, we give a white-box attack method to show that malicious users can exploit the scheduling vulnerability to benefit certain jobs. The proposed attack method only requires minor perturbations job features to significantly change the scheduling priority of these jobs. We implement both greedy and critical path based algorithms to facilitate the attacks to a stateof-the-art DRL based scheduler called Decima. Our extensive experiments on TPC-H workloads show a 62% and 66% success rate of attacks with the two algorithms. Successful attacks achieve a 18.6% and 17.5% completion time reduction.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [1] XSS adversarial example attacks based on deep reinforcement learning
    Chen, Li
    Tang, Cong
    He, Junjiang
    Zhao, Hui
    Lan, Xiaolong
    Li, Tao
    [J]. COMPUTERS & SECURITY, 2022, 120
  • [2] Understanding adversarial attacks on observations in deep reinforcement learning
    You, Qiaoben
    Ying, Chengyang
    Zhou, Xinning
    Su, Hang
    Zhu, Jun
    Zhang, Bo
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2024, 67 (05)
  • [3] Challenges and Countermeasures for Adversarial Attacks on Deep Reinforcement Learning
    Ilahi I.
    Usama M.
    Qadir J.
    Janjua M.U.
    Al-Fuqaha A.
    Hoang D.T.
    Niyato D.
    [J]. IEEE Transactions on Artificial Intelligence, 2022, 3 (02): : 90 - 109
  • [4] Understanding adversarial attacks on observations in deep reinforcement learning
    You QIAOBEN
    Chengyang YING
    Xinning ZHOU
    Hang SU
    Jun ZHU
    Bo ZHANG
    [J]. Science China(Information Sciences), 2024, 67 (05) : 69 - 83
  • [5] A Survey on Adversarial Attacks and Defenses for Deep Reinforcement Learning
    Liu A.-S.
    Guo J.
    Li S.-M.
    Xiao Y.-S.
    Liu X.-L.
    Tao D.-C.
    [J]. Jisuanji Xuebao/Chinese Journal of Computers, 2023, 46 (08): : 1553 - 1576
  • [6] Adversarial Jamming Attacks on Deep Reinforcement Learning Based Dynamic Multichannel Access
    Zhong, Chen
    Wang, Feng
    Gursoy, M. Cenk
    Velipasalar, Senem
    [J]. 2020 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2020,
  • [7] Instance-based defense against adversarial attacks in Deep Reinforcement Learning
    Garcia, Javier
    Sagredo, Ismael
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 107
  • [8] Stealthy and Efficient Adversarial Attacks against Deep Reinforcement Learning
    Sun, Jianwen
    Zhang, Tianwei
    Xie, Xiaofei
    Ma, Lei
    Zheng, Yan
    Chen, Kangjie
    Liu, Yang
    [J]. THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 5883 - 5891
  • [9] Critical State Detection for Adversarial Attacks in Deep Reinforcement Learning
    Kumar, Praveen R.
    Kumar, Niranjan, I
    Sivasankaran, Sujith
    Vamsi, Mohan A.
    Vijayaraghavan, Vineeth
    [J]. 20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 1761 - 1766
  • [10] Deep Reinforcement Adversarial Learning Against Botnet Evasion Attacks
    Apruzzese, Giovanni
    Andreolini, Mauro
    Marchetti, Mirco
    Venturi, Andrea
    Colajanni, Michele
    [J]. IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2020, 17 (04): : 1975 - 1987