Keyframe Extraction from Motion Capture Data for Visualization

被引:3
|
作者
Yang, Yang [1 ]
Zeng, Lanling [1 ]
Leung, Howard [2 ]
机构
[1] Jiangsu Univ, Dept Comp Sci, Zhenjiang, Peoples R China
[2] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Keyframe extraction; Motion capture; Visualization; Principal component analysis; Zero-crossing point; CURVE;
D O I
10.1109/ICVRV.2016.33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel method to extract keyframes from motion capture data for people to better visualize and understand the content of the motion. It first applies a Butterworth filter to remove the noise in the motion capture data, then carries out principal component analysis (PCA) to reduce the dimension. By detecting the zero-crossing points of the velocity in the principal components, the initial set of keyframes can be derived. The initial set of keyframes are further pruned to group similar postures together to remove redundancies. An experiment based on the CMU motion capture database is carried out, and the experiment result suggests that the keyframes extracted with our method could better support visualization and understanding of motion capture data.
引用
收藏
页码:154 / 157
页数:4
相关论文
共 50 条
  • [1] An efficient keyframe extraction from motion capture data
    Xiao, Jun
    Zhuang, Yueting
    Yang, Tao
    Wu, Fei
    [J]. ADVANCES IN COMPUTER GRAPHICS, PROCEEDINGS, 2006, 4035 : 494 - 501
  • [2] Multiscale motion saliency for keyframe extraction from motion capture sequences
    Halit, Cihan
    Capin, Tolga
    [J]. COMPUTER ANIMATION AND VIRTUAL WORLDS, 2011, 22 (01) : 3 - 14
  • [3] Keyframe extraction for human motion capture data based on affinity propagation
    Sun, Bin
    Kong, Dehui
    Wang, Shaofan
    Li, Jinghua
    [J]. 2018 IEEE 9TH ANNUAL INFORMATION TECHNOLOGY, ELECTRONICS AND MOBILE COMMUNICATION CONFERENCE (IEMCON), 2018, : 107 - 112
  • [4] Keyframe Extraction from Human Motion Capture Data Based on a Multiple Population Genetic Algorithm
    Zhang, Qiang
    Zhang, Shulu
    Zhou, Dongsheng
    [J]. SYMMETRY-BASEL, 2014, 6 (04): : 926 - 937
  • [5] Keyframe extraction for motion capture data via pose saliency and reconstruction error
    Liu, Yungen
    Chen, Linfeng
    Lin, Zhenrong
    [J]. VISUAL COMPUTER, 2023, 39 (10): : 4943 - 4953
  • [6] Keyframe extraction for motion capture data via pose saliency and reconstruction error
    Yungen Liu
    Linfeng Chen
    Zhenrong Lin
    [J]. The Visual Computer, 2023, 39 : 4943 - 4953
  • [7] KeyFrame extraction for human motion capture data via multiple binomial fitting
    Xu, Chenxu
    Yu, Wenjie
    Li, Yanran
    Lu, Xuequan
    Wang, Meili
    Yang, Xiaosong
    [J]. COMPUTER ANIMATION AND VIRTUAL WORLDS, 2021, 32 (01)
  • [8] Keyframe reduction techniques for motion capture data
    Oender, Onur
    Gueduekbay, Ugur
    Oezguec, Buelent
    Erdem, Tanju
    Erdem, Cigdem
    Oezkan, Mehmet
    [J]. 2008 3DTV-CONFERENCE: THE TRUE VISION - CAPTURE, TRANSMISSION AND DISPLAY OF 3D VIDEO, 2008, : 293 - 296
  • [9] Keyframe Extraction for Human Motion Capture Data Based on Joint Kernel Sparse Representation
    Xia, Guiyu
    Sun, Huaijiang
    Niu, Xiaoqing
    Zhang, Guoqing
    Feng, Lei
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (02) : 1589 - 1599
  • [10] A Hybrid Approach to Keyframe Extraction from Motion Capture Data Using Curve Simplification and Principal Component Analysis
    Miura, Takeshi
    Kaiga, Takaaki
    Shibata, Takeshi
    Katsura, Hiroaki
    Tajima, Katsubumi
    Tamamoto, Hideo
    [J]. IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2014, 9 (06) : 697 - 699