Efficient Bare Metal Auto-scaling for NFV in Edge Computing

被引:0
|
作者
Pang, Xudong [1 ]
Wang, Jing [1 ]
Wang, Jingyu [1 ]
Qi, Qi [1 ]
Xu, Jie [1 ]
Yu, Zhenguang [1 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing, Peoples R China
来源
EDGE COMPUTING - EDGE 2018 | 2018年 / 10973卷
基金
中国国家自然科学基金;
关键词
Bare metal; NFV; Auto-scaling; Scheduling; Edge computing;
D O I
10.1007/978-3-319-94340-4_5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Elasticity is an essential attribute of cloud data center, which is critical for operating resources in face of peaks and valleys of business. At present, the automatic scaling technique of virtual machines is widely studied, but barely for physical machines. Despite lack of flexibility, we all know that physical server can perform faster and more efficiently than virtualized instances, especially in Network Function Virtualization (NFV) systems. Some virtual network functions (VNFs) actually require high performance computing, which is a hard task for virtual machines. Besides, good management of bare metal resources can be significant for the data center power cost and human maintenance cost. Accordingly, we think that auto-scaling of physical machine is worth studying. This paper proposes a bare metal automatic scaling scheme based on workload prediction, and finally make tests on an open source NFV platform. The new scheme obtains good result on computation intensive VNFs scenario, including complete the scale in minutes, guarantee for the continuity of VNF processing business, and can cope with the load fluctuation better.
引用
收藏
页码:67 / 79
页数:13
相关论文
共 50 条
  • [1] Auto-scaling Applications in Edge Computing: Taxonomy and Challenges
    Taherizadeh, Salman
    Stankovski, Vlado
    [J]. INTERNATIONAL CONFERENCE ON BIG DATA AND INTERNET OF THINGS (BDIOT 2017), 2017, : 158 - 163
  • [2] Online machine learning for auto-scaling in the edge computing?
    da Silva, Thiago Pereira
    Neto, Aluizio Rocha
    Batista, Thais Vasconcelos
    Delicato, Flavia C.
    Pires, Paulo F.
    Lopes, Frederico
    [J]. PERVASIVE AND MOBILE COMPUTING, 2022, 87
  • [3] An online ensemble method for auto-scaling NFV-based applications in the edge
    da Silva, Thiago Pereira
    Batista, Thais Vasconcelos
    Delicato, Flavia Coimbra
    Pires, Paulo Ferreira
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (04): : 4255 - 4279
  • [4] AMAS: Adaptive Auto-Scaling on the Edge
    Mukherjee, Saptarshi
    Sidhanta, Subhajit
    [J]. 21ST IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND INTERNET COMPUTING (CCGRID 2021), 2021, : 618 - 621
  • [5] Horizontal Auto-Scaling in Edge Computing Environment using Online Machine Learning
    da Silva, Thiago Pereira
    Rocha Neto, Aluizio F.
    Batista, Thais Vasconcelos
    Lopes, Frederico A. S.
    Delicato, Flavia C.
    Pires, Paulo F.
    [J]. 2021 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS DASC/PICOM/CBDCOM/CYBERSCITECH 2021, 2021, : 161 - 168
  • [6] A MAPE-K and Queueing Theory Approach for VNF Auto-scaling in Edge Computing
    Silva, Thiago P.
    Batista, Thais V.
    Battisti, Anselmo L.
    Saraiva, Andre
    Rocha, Antonio A.
    Delicato, Flavia C.
    Bastos, Ian Vilar
    Macedo, Evandro L. C.
    de Oliveira, Ana C. B.
    Pires, Paulo F.
    [J]. 2023 IEEE 12TH INTERNATIONAL CONFERENCE ON CLOUD NETWORKING, CLOUDNET, 2023, : 144 - 152
  • [7] Optimized resource usage with hybrid auto-scaling system for knative serverless edge computing
    Tran, Minh-Ngoc
    Kim, Younghan
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 152 : 304 - 316
  • [8] An Auto-Scaling Approach for Microservices in Cloud Computing Environments
    Matineh ZargarAzad
    Mehrdad Ashtiani
    [J]. Journal of Grid Computing, 2023, 21
  • [9] Efficient Hybriding Auto-Scaling for OpenStack Platforms
    Chen, Chia-Ching
    Chen, Shao-Jui
    Yin, Fan
    Wang, Wei-Jen
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON SMART CITY/SOCIALCOM/SUSTAINCOM (SMARTCITY), 2015, : 1079 - 1085
  • [10] Auto-scaling mechanisms in serverless computing: A comprehensive review
    Tari, Mohammad
    Ghobaei-Arani, Mostafa
    Pouramini, Jafar
    Ghorbian, Mohsen
    [J]. COMPUTER SCIENCE REVIEW, 2024, 53