The translocation of Bax alpha, a pro-apoptotic member of the BCL-2 family from the cytosol to mitochondria, is a central event of the apoptotic program. We report here that the N-terminal (NT) end of Bax alpha, which contains its first alpha helix (Halpha1), is a functional mitochondrial-addressing signal both in mammals and in yeast. Similar results were obtained with a newly described variant of Bax called Bax psi, which lacks the first 20 amino acids of Bax a and is constitutively associated with mitochondria. Deletion of Halpha1 impairs the binding of Bax psi to mitochondria, whereas a fusion of the N terminus of Bax alpha, which contains Halpha1 with a cytosolic protein, results in the binding of the chimeric proteins to mitochondria both in a cell-free assay and in vitro. More importantly, the mitochondria-bound chimeric proteins inhibit the interaction of Bax psi with mitochondria as well as Bax-apoptogenic properties. The mutations of the Halpha1, which inhibit Bax alpha and Bax psi translocation to mitochondria, also block the subsequent activation of the execution phase of apoptosis. Conversely, a deletion of the C terminus does not appear to influence Bax a and Bax psi mitochondrial addressing. Taken together, our results suggest that Bax is targeted to mitochondria by its NT and thus through a pathway that is unique for a member of the BCL-2 family.