Mesoscale constitutive modeling of magnetic dispersions

被引:23
|
作者
Bhandar, AS
Wiest, JM [1 ]
机构
[1] Univ Alabama, Dept Chem Engn, Tuscaloosa, AL 35487 USA
[2] Univ Alabama, Ctr Mat Informat Technol, Tuscaloosa, AL 35487 USA
关键词
acicular ferromagnetic dispersion; dispersion rheology; orientational order;
D O I
10.1016/S0021-9797(02)00010-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A constitutive model for dispersions of acicular magnetic particles has been developed by modeling the particles as rigid dumbbells dispersed in a solvent. The effects of Brownian motion, anisotropic hydrodynamic drag, a steric force in the form of the Maier-Saupe potential, and, most importantly, a mean-field magnetic potential are included in the model. The development is similar to previous models for liquid-crystalline polymers. The model predicts multiple orientational states for the dispersion, and this phase behavior is described in terms of an orientational order parameter S and an average alignment parameter J; the latter is introduced because the magnetic particles have distinguishable direction due to polarity. A transition from isotropic to nematic phases at equilibrium is predicted. Multiple nematic phases-both prolate and oblate-are predicted in the presence of steady shear flow and external magnetic field parallel to the flow. The effect of increasing magnetic interparticle interactions and particle concentration is also presented. Comparisons with experimental data for the steady shear viscosity show very good agreement. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:371 / 382
页数:12
相关论文
共 50 条
  • [1] Mesoscale constitutive modeling of magnetic dispersions: material functions for shear flows
    Bhandar, AS
    Piao, M
    Lane, AM
    Wiest, JM
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2003, 268 (01) : 246 - 257
  • [2] Mesoscale constitutive modeling of non-crystallizing filled elastomers
    Harish, Ajay B.
    Wriggers, Peter
    Jungk, Juliane
    Hojdis, Nils
    Recker, Carla
    [J]. COMPUTATIONAL MECHANICS, 2016, 57 (04) : 653 - 677
  • [3] Mesoscale constitutive modeling of non-crystallizing filled elastomers
    Ajay B. Harish
    Peter Wriggers
    Juliane Jungk
    Nils Hojdis
    Carla Recker
    [J]. Computational Mechanics, 2016, 57 : 653 - 677
  • [4] Mesoscale modeling of bimodal elastomer networks: Constitutive and optical theories and results
    von Lockette, PR
    Arruda, EM
    Wang, Y
    [J]. MACROMOLECULES, 2002, 35 (18) : 7100 - 7109
  • [5] Electrical. percolation in carbon nanotube dispersions: A mesoscale modeling and experimental study
    Rahatekar, Sameer Sharad
    Shaffer, Milo S. P.
    Elliott, James A.
    [J]. Smart Nanotextiles, 2006, 920 : 63 - 69
  • [6] Measuring and modeling the magnetic settling of superparamagnetic nanoparticle dispersions
    Prigiobbe, Valentina
    Ko, Saebom
    Huh, Chun
    Bryant, Steven L.
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2015, 447 : 58 - 67
  • [7] Mesoscale models of dispersions stabilized by surfactants and colloids
    van der Sman, R. G. M.
    Meinders, M. B. J.
    [J]. ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2014, 211 : 63 - 76
  • [8] MAGNETIC DISPERSIONS
    PEARCE, RR
    [J]. NATURE, 1966, 212 (5070) : 1566 - &
  • [9] Mesoscale lattices and temporal multiplexing in liquid crystallpolymer dispersions
    Sousa, ME
    Qi, J
    Escuti, MJ
    Crawford, GP
    [J]. LIQUID CRYSTALS VII, 2003, 5213 : 130 - 138
  • [10] Post-fire dynamic bond behavior of concrete and deformed bar: Mesoscale simulation and constitutive modeling
    Li, Xiaoya
    Zhang, Renbo
    Jin, Liu
    Du, Xiuli
    [J]. ENGINEERING STRUCTURES, 2022, 267