Cerenkov luminescence imaging of human breast cancer: a Monte Carlo simulations study

被引:2
|
作者
Boschi, F. [1 ]
Pagliazzi, M. [2 ,3 ]
Spinelli, A. E. [2 ,3 ]
机构
[1] Univ Verona, Dept Comp Sci, Str Le Grazie 15, I-37134 Verona, Italy
[2] Ist Sci San Raffaele, Dept Med Phys, Via Olgettina 60, I-20132 Milan, Italy
[3] Ist Sci San Raffaele, Ctr Expt Imaging, Via Olgettina 60, I-20132 Milan, Italy
来源
JOURNAL OF INSTRUMENTATION | 2016年 / 11卷
关键词
Optical detector readout concepts; Simulation methods and programs; Photon detectors for UV; visible and IR photons (solid-state) (PIN diodes; APDs; Si-PMTs; G-APDs; CCDs; EBCCDs; EMCCDs etc); POSITRON-EMITTING RADIOTRACERS; OPTICAL-PROPERTIES; RADIATION; TRANSPORT; TISSUES; GAMOS;
D O I
10.1088/1748-0221/11/03/C03032
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Cerenkov luminescence imaging (CLI) is a novel molecular imaging technique based on the detection of Cerenkov light produced by beta particles traveling through biological tissues. In this paper we simulated using F-18 and Y-90 the possibility of detecting Cerenkov luminescence in human breast tissues, in order to evaluate the potential of the CLI technique in a clinical setting. A human breast digital phantom was obtained from an F-18-FDG CT-PET scan. The spectral features of the breast surface emission were obtained as well as the simulated images obtainable by a cooled CCD detector. The simulated images revealed a signal to noise ratio equal to 6 for a 300 s of acquisition time. We concluded that a dedicated human Cerenkov imaging detector can be designed in order to offer a valid low cost alternative to diagnostic techniques in nuclear medicine, in particular allowing the detection of beta-minus emitters used in radiotherapy.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Monte Carlo Simulations of Beta Particle Measurement Using Cerenkov Luminescence Imaging or Beta Detection
    Altabella, L.
    Gigliotti, C. R.
    Spinelli, A. E.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2015, 42 : S363 - S363
  • [2] A Monte Carlo study of pinhole collimated Cerenkov luminescence imaging integrated with radionuclide treatment
    Changran Geng
    Yao Ai
    Xiaobin Tang
    Diyun Shu
    Chunhui Gong
    Fada Guan
    Australasian Physical & Engineering Sciences in Medicine, 2019, 42 : 481 - 487
  • [3] A Monte Carlo study of pinhole collimated Cerenkov luminescence imaging integrated with radionuclide treatment
    Geng, Changran
    Ai, Yao
    Tang, Xiaobin
    Shu, Diyun
    Gong, Chunhui
    Guan, Fada
    AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE, 2019, 42 (02) : 481 - 487
  • [4] Monte Carlo simulations of the CANGAROO I 3.8 m imaging Cerenkov telescope
    Dazeley, SA
    Patterson, JR
    ASTROPARTICLE PHYSICS, 2001, 15 (03) : 305 - 311
  • [5] Monte Carlo feasibility study for in vivo small animals beta detection: from beta to Cerenkov luminescence imaging
    Altabella, Luisa
    Gigliotti, Carmen R.
    Spinelli, Antonello E.
    2015 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2015,
  • [6] Quantitative Cerenkov Luminescence Imaging: Measurements and Simulations
    Ciarrocchi, Esther
    Belcari, Nicola
    Cataldi, Angela Gabriella
    Erba, Paola Anna
    Del Guerra, Alberto
    2016 IEEE NUCLEAR SCIENCE SYMPOSIUM, MEDICAL IMAGING CONFERENCE AND ROOM-TEMPERATURE SEMICONDUCTOR DETECTOR WORKSHOP (NSS/MIC/RTSD), 2016,
  • [7] Diffraction enhanced breast imaging through Monte Carlo simulations
    Cunha, D. M.
    Tomal, A.
    Poletti, M. E.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 652 (01): : 878 - 882
  • [8] Monte Carlo feasibility study for image guided surgery: from direct beta minus detection to Cerenkov luminescence imaging
    Gigliotti, C. R.
    Altabella, L.
    Boschi, F.
    Spinelli, A. E.
    JOURNAL OF INSTRUMENTATION, 2016, 11
  • [9] Performance of the stereoscopic system of the HEGRA imaging air Cerenkov telescopes:: Monte Carlo simulations and observations
    Konopelko, A
    Hemberger, M
    Aharonian, F
    Daum, A
    Hofmann, W
    Köhler, C
    Krawczynski, H
    Völk, HJ
    Akhperjanian, A
    Barrio, J
    Bernlöhr, K
    Bojahr, H
    Contreras, J
    Cortina, J
    Deckers, T
    Denninghoff, S
    Fernandez, J
    Fonseca, V
    Gonzalez, J
    Haustein, V
    Heinzelmann, G
    Hermann, G
    Hess, M
    Heusler, A
    Hohl, H
    Holl, I
    Horns, D
    Kankanian, R
    Kestel, M
    Kettler, J
    Kirstein, O
    Kornmayer, H
    Kranich, D
    Lampeitl, H
    Lindner, A
    Lorenz, E
    Magnussen, N
    Meyer, H
    Mirzoyan, R
    Möller, H
    Moralejo, A
    Padilla, L
    Panter, M
    Petry, D
    Plaga, R
    Plyasheshnikov, A
    Prahl, J
    Prosch, C
    Pühlhofer, G
    Rauterberg, G
    ASTROPARTICLE PHYSICS, 1999, 10 (04) : 275 - 289
  • [10] Monte Carlo Simulations in Nanomedicine: Advancing Cancer Imaging and Therapy
    Chow, James C. L.
    NANOMATERIALS, 2025, 15 (02)