The Abel-type polynomial identities

被引:0
|
作者
Huang, Fengying [1 ,2 ]
Liu, Bolian [1 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Guangdong Polytech Normal Univ, Sch Comp Sci, Guangzhou 510631, Guangdong, Peoples R China
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2010年 / 17卷 / 01期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Abel identity is (x + y)(n) = Sigma(n)(i=0)((n)(i))x(x - iz)(i-1)(y + iz)(n-i), where x,y and z are real numbers. In this paper we deduce several polynomials expansions, referred to as Abel-type identities, by using Foata's method, and also show some of their applications.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] STRONG ABEL-TYPE SUMMABILITY
    BORWEIN, D
    RIZVI, JH
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (02): : A303 - A303
  • [2] ABSOLUTE ABEL-TYPE SUMMABILITY METHODS
    BORWEIN, D
    RIZVI, JH
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (05): : 785 - &
  • [3] ABEL-TYPE METHODS OF SUMMABILITY
    BORWEIN, D
    RIZVI, JH
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1971, 247 : 139 - &
  • [4] On an extension of Riordan array and its application in the construction of convolution-type and Abel-type identities
    He, Tian-Xiao
    Hsu, Leetsch C.
    Ma, Xing Ron
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2014, 42 : 112 - 134
  • [5] SUMMABILITY OF A TRIGONOMETRIC INTEGRAL BY ABEL-TYPE METHOD
    MOHANTY, R
    RAY, BK
    [J]. BULLETIN OF THE CALCUTTA MATHEMATICAL SOCIETY, 1969, 61 (04): : 167 - &
  • [6] NOTE ON A SCALE OF ABEL-TYPE SUMMABILITY METHODS
    KUTTNER, B
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1978, 298 : 218 - 220
  • [7] TAUBERIAN THEOREMS ON A SCALE OF ABEL-TYPE SUMMABILITY METHODS
    BORWEIN, D
    WATSON, B
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1978, 298 : 1 - 7
  • [8] ON GALERKIN METHODS FOR ABEL-TYPE INTEGRAL-EQUATIONS
    EGGERMONT, PPB
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (05) : 1093 - 1117
  • [9] A fully discrete Galerkin method for Abel-type integral equations
    Vogeli, Urs
    Nedaiasl, Khadijeh
    Sauter, Stefan A.
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2018, 44 (05) : 1601 - 1626
  • [10] A new method of solving noisy Abel-type equations
    Garza, J
    Hall, P
    Ruymgaart, FH
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 257 (02) : 403 - 419